Evaluate
\frac{2\left(x^{7}-4x^{5}+8x^{4}+16x^{3}+32x^{2}+128\right)}{\left(x^{4}+16\right)^{2}-16x^{4}}
Expand
\frac{2\left(x^{7}-4x^{5}+8x^{4}+16x^{3}+32x^{2}+128\right)}{\left(x^{4}+16\right)^{2}-16x^{4}}
Graph
Share
Copied to clipboard
\frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+2x+4 and x^{2}-2x+4 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right). Multiply \frac{x+2}{x^{2}+2x+4} times \frac{x^{2}-2x+4}{x^{2}-2x+4}. Multiply \frac{x-2}{x^{2}-2x+4} times \frac{x^{2}+2x+4}{x^{2}+2x+4}.
\frac{\left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Since \frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} and \frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Do the multiplications in \left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right).
\frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Combine like terms in x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}+\frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right) and x^{4}-4x^{2}+16 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right). Multiply \frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} times \frac{x^{4}-4x^{2}+16}{x^{4}-4x^{2}+16}. Multiply \frac{16}{x^{4}-4x^{2}+16} times \frac{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Since \frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} and \frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Do the multiplications in 2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right).
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Combine like terms in 2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{x^{8}+16x^{4}+256}
Expand \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right).
\frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+2x+4 and x^{2}-2x+4 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right). Multiply \frac{x+2}{x^{2}+2x+4} times \frac{x^{2}-2x+4}{x^{2}-2x+4}. Multiply \frac{x-2}{x^{2}-2x+4} times \frac{x^{2}+2x+4}{x^{2}+2x+4}.
\frac{\left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Since \frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} and \frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Do the multiplications in \left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right).
\frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Combine like terms in x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}+\frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right) and x^{4}-4x^{2}+16 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right). Multiply \frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} times \frac{x^{4}-4x^{2}+16}{x^{4}-4x^{2}+16}. Multiply \frac{16}{x^{4}-4x^{2}+16} times \frac{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Since \frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} and \frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Do the multiplications in 2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right).
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Combine like terms in 2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{x^{8}+16x^{4}+256}
Expand \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}