Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+2x+4 and x^{2}-2x+4 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right). Multiply \frac{x+2}{x^{2}+2x+4} times \frac{x^{2}-2x+4}{x^{2}-2x+4}. Multiply \frac{x-2}{x^{2}-2x+4} times \frac{x^{2}+2x+4}{x^{2}+2x+4}.
\frac{\left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Since \frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} and \frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Do the multiplications in \left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right).
\frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Combine like terms in x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}+\frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right) and x^{4}-4x^{2}+16 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right). Multiply \frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} times \frac{x^{4}-4x^{2}+16}{x^{4}-4x^{2}+16}. Multiply \frac{16}{x^{4}-4x^{2}+16} times \frac{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Since \frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} and \frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Do the multiplications in 2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right).
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Combine like terms in 2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{x^{8}+16x^{4}+256}
Expand \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right).
\frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}+2x+4 and x^{2}-2x+4 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right). Multiply \frac{x+2}{x^{2}+2x+4} times \frac{x^{2}-2x+4}{x^{2}-2x+4}. Multiply \frac{x-2}{x^{2}-2x+4} times \frac{x^{2}+2x+4}{x^{2}+2x+4}.
\frac{\left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Since \frac{\left(x+2\right)\left(x^{2}-2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} and \frac{\left(x-2\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Do the multiplications in \left(x+2\right)\left(x^{2}-2x+4\right)+\left(x-2\right)\left(x^{2}+2x+4\right).
\frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}+\frac{16}{x^{4}-4x^{2}+16}
Combine like terms in x^{3}-2x^{2}+4x+2x^{2}-4x+8+x^{3}+2x^{2}+4x-2x^{2}-4x-8.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}+\frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right) and x^{4}-4x^{2}+16 is \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right). Multiply \frac{2x^{3}}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)} times \frac{x^{4}-4x^{2}+16}{x^{4}-4x^{2}+16}. Multiply \frac{16}{x^{4}-4x^{2}+16} times \frac{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}.
\frac{2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Since \frac{2x^{3}\left(x^{4}-4x^{2}+16\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} and \frac{16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Do the multiplications in 2x^{3}\left(x^{4}-4x^{2}+16\right)+16\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right).
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)}
Combine like terms in 2x^{7}-8x^{5}+32x^{3}+16x^{4}+32x^{3}+64x^{2}-32x^{3}-64x^{2}-128x+64x^{2}+128x+256.
\frac{2x^{7}-8x^{5}+32x^{3}+16x^{4}+64x^{2}+256}{x^{8}+16x^{4}+256}
Expand \left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right).