Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+2\right)\left(x+2\right)=\left(x+4\right)\times 4
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right)\left(x+4\right), the least common multiple of x+4,2x+2.
2x^{2}+6x+4=\left(x+4\right)\times 4
Use the distributive property to multiply 2x+2 by x+2 and combine like terms.
2x^{2}+6x+4=4x+16
Use the distributive property to multiply x+4 by 4.
2x^{2}+6x+4-4x=16
Subtract 4x from both sides.
2x^{2}+2x+4=16
Combine 6x and -4x to get 2x.
2x^{2}+2x+4-16=0
Subtract 16 from both sides.
2x^{2}+2x-12=0
Subtract 16 from 4 to get -12.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-12\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-12\right)}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4+96}}{2\times 2}
Multiply -8 times -12.
x=\frac{-2±\sqrt{100}}{2\times 2}
Add 4 to 96.
x=\frac{-2±10}{2\times 2}
Take the square root of 100.
x=\frac{-2±10}{4}
Multiply 2 times 2.
x=\frac{8}{4}
Now solve the equation x=\frac{-2±10}{4} when ± is plus. Add -2 to 10.
x=2
Divide 8 by 4.
x=-\frac{12}{4}
Now solve the equation x=\frac{-2±10}{4} when ± is minus. Subtract 10 from -2.
x=-3
Divide -12 by 4.
x=2 x=-3
The equation is now solved.
\left(2x+2\right)\left(x+2\right)=\left(x+4\right)\times 4
Variable x cannot be equal to any of the values -4,-1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right)\left(x+4\right), the least common multiple of x+4,2x+2.
2x^{2}+6x+4=\left(x+4\right)\times 4
Use the distributive property to multiply 2x+2 by x+2 and combine like terms.
2x^{2}+6x+4=4x+16
Use the distributive property to multiply x+4 by 4.
2x^{2}+6x+4-4x=16
Subtract 4x from both sides.
2x^{2}+2x+4=16
Combine 6x and -4x to get 2x.
2x^{2}+2x=16-4
Subtract 4 from both sides.
2x^{2}+2x=12
Subtract 4 from 16 to get 12.
\frac{2x^{2}+2x}{2}=\frac{12}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=\frac{12}{2}
Divide 2 by 2.
x^{2}+x=6
Divide 12 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Simplify.
x=2 x=-3
Subtract \frac{1}{2} from both sides of the equation.