Solve for x
x = \frac{\sqrt{57} - 3}{4} \approx 1.137458609
x=\frac{-\sqrt{57}-3}{4}\approx -2.637458609
Graph
Share
Copied to clipboard
\left(x-3\right)\left(x+2\right)-x^{2}=\left(x-3\right)\left(x+3\right)-\left(-\left(3+x\right)\left(x-1\right)\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x^{2}-9,3-x.
x^{2}-x-6-x^{2}=\left(x-3\right)\left(x+3\right)-\left(-\left(3+x\right)\left(x-1\right)\right)
Use the distributive property to multiply x-3 by x+2 and combine like terms.
x^{2}-x-6-x^{2}=x^{2}-9-\left(-\left(3+x\right)\left(x-1\right)\right)
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}-x-6-x^{2}=x^{2}-9-\left(-3-x\right)\left(x-1\right)
Use the distributive property to multiply -1 by 3+x.
x^{2}-x-6-x^{2}=x^{2}-9-\left(-2x+3-x^{2}\right)
Use the distributive property to multiply -3-x by x-1 and combine like terms.
x^{2}-x-6-x^{2}=x^{2}-9+2x-3+x^{2}
To find the opposite of -2x+3-x^{2}, find the opposite of each term.
x^{2}-x-6-x^{2}=x^{2}-12+2x+x^{2}
Subtract 3 from -9 to get -12.
x^{2}-x-6-x^{2}=2x^{2}-12+2x
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}-x-6-x^{2}-2x^{2}=-12+2x
Subtract 2x^{2} from both sides.
-x^{2}-x-6-x^{2}=-12+2x
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x-6-x^{2}-\left(-12\right)=2x
Subtract -12 from both sides.
-x^{2}-x-6-x^{2}+12=2x
The opposite of -12 is 12.
-x^{2}-x-6-x^{2}+12-2x=0
Subtract 2x from both sides.
-x^{2}-x+6-x^{2}-2x=0
Add -6 and 12 to get 6.
-x^{2}-3x+6-x^{2}=0
Combine -x and -2x to get -3x.
-2x^{2}-3x+6=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -3 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\times 6}}{2\left(-2\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+8\times 6}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-3\right)±\sqrt{9+48}}{2\left(-2\right)}
Multiply 8 times 6.
x=\frac{-\left(-3\right)±\sqrt{57}}{2\left(-2\right)}
Add 9 to 48.
x=\frac{3±\sqrt{57}}{2\left(-2\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{57}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{57}+3}{-4}
Now solve the equation x=\frac{3±\sqrt{57}}{-4} when ± is plus. Add 3 to \sqrt{57}.
x=\frac{-\sqrt{57}-3}{4}
Divide 3+\sqrt{57} by -4.
x=\frac{3-\sqrt{57}}{-4}
Now solve the equation x=\frac{3±\sqrt{57}}{-4} when ± is minus. Subtract \sqrt{57} from 3.
x=\frac{\sqrt{57}-3}{4}
Divide 3-\sqrt{57} by -4.
x=\frac{-\sqrt{57}-3}{4} x=\frac{\sqrt{57}-3}{4}
The equation is now solved.
\left(x-3\right)\left(x+2\right)-x^{2}=\left(x-3\right)\left(x+3\right)-\left(-\left(3+x\right)\left(x-1\right)\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x+3,x^{2}-9,3-x.
x^{2}-x-6-x^{2}=\left(x-3\right)\left(x+3\right)-\left(-\left(3+x\right)\left(x-1\right)\right)
Use the distributive property to multiply x-3 by x+2 and combine like terms.
x^{2}-x-6-x^{2}=x^{2}-9-\left(-\left(3+x\right)\left(x-1\right)\right)
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}-x-6-x^{2}=x^{2}-9-\left(-3-x\right)\left(x-1\right)
Use the distributive property to multiply -1 by 3+x.
x^{2}-x-6-x^{2}=x^{2}-9-\left(-2x+3-x^{2}\right)
Use the distributive property to multiply -3-x by x-1 and combine like terms.
x^{2}-x-6-x^{2}=x^{2}-9+2x-3+x^{2}
To find the opposite of -2x+3-x^{2}, find the opposite of each term.
x^{2}-x-6-x^{2}=x^{2}-12+2x+x^{2}
Subtract 3 from -9 to get -12.
x^{2}-x-6-x^{2}=2x^{2}-12+2x
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}-x-6-x^{2}-2x^{2}=-12+2x
Subtract 2x^{2} from both sides.
-x^{2}-x-6-x^{2}=-12+2x
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x-6-x^{2}-2x=-12
Subtract 2x from both sides.
-x^{2}-3x-6-x^{2}=-12
Combine -x and -2x to get -3x.
-x^{2}-3x-x^{2}=-12+6
Add 6 to both sides.
-x^{2}-3x-x^{2}=-6
Add -12 and 6 to get -6.
-2x^{2}-3x=-6
Combine -x^{2} and -x^{2} to get -2x^{2}.
\frac{-2x^{2}-3x}{-2}=-\frac{6}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{3}{-2}\right)x=-\frac{6}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{3}{2}x=-\frac{6}{-2}
Divide -3 by -2.
x^{2}+\frac{3}{2}x=3
Divide -6 by -2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=3+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=3+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{57}{16}
Add 3 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{57}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{57}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{57}}{4} x+\frac{3}{4}=-\frac{\sqrt{57}}{4}
Simplify.
x=\frac{\sqrt{57}-3}{4} x=\frac{-\sqrt{57}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}