Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{x+2}{x+1} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Since \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Do the multiplications in \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Combine like terms in x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{x+5}{x+2} times \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Since \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Do the multiplications in 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Combine like terms in 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Expand \left(x+1\right)\left(x+2\right).
\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{x+2}{x+1} times \frac{x+2}{x+2}. Multiply \frac{x+1}{x+2} times \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Since \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Do the multiplications in \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Combine like terms in x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+2\right) and x+2 is \left(x+1\right)\left(x+2\right). Multiply \frac{x+5}{x+2} times \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Since \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Do the multiplications in 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Combine like terms in 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Expand \left(x+1\right)\left(x+2\right).