Solve for x
x=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
6\left(x+2\right)-10\left(1-\frac{2x-5}{2}\right)=5\left(2x-5\right)
Multiply both sides of the equation by 30, the least common multiple of 5,3,2,6.
6x+12-10\left(1-\frac{2x-5}{2}\right)=5\left(2x-5\right)
Use the distributive property to multiply 6 by x+2.
6x+12-10\left(1-\frac{2x-5}{2}\right)=10x-25
Use the distributive property to multiply 5 by 2x-5.
6x+12-10\left(1-\left(x-\frac{5}{2}\right)\right)=10x-25
Divide each term of 2x-5 by 2 to get x-\frac{5}{2}.
6x+12-10\left(1-x-\left(-\frac{5}{2}\right)\right)=10x-25
To find the opposite of x-\frac{5}{2}, find the opposite of each term.
6x+12-10\left(1-x+\frac{5}{2}\right)=10x-25
The opposite of -\frac{5}{2} is \frac{5}{2}.
6x+12-10\left(\frac{2}{2}-x+\frac{5}{2}\right)=10x-25
Convert 1 to fraction \frac{2}{2}.
6x+12-10\left(\frac{2+5}{2}-x\right)=10x-25
Since \frac{2}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
6x+12-10\left(\frac{7}{2}-x\right)=10x-25
Add 2 and 5 to get 7.
6x+12-10\times \frac{7}{2}+10x=10x-25
Use the distributive property to multiply -10 by \frac{7}{2}-x.
6x+12+\frac{-10\times 7}{2}+10x=10x-25
Express -10\times \frac{7}{2} as a single fraction.
6x+12+\frac{-70}{2}+10x=10x-25
Multiply -10 and 7 to get -70.
6x+12-35+10x=10x-25
Divide -70 by 2 to get -35.
6x-23+10x=10x-25
Subtract 35 from 12 to get -23.
16x-23=10x-25
Combine 6x and 10x to get 16x.
16x-23-10x=-25
Subtract 10x from both sides.
6x-23=-25
Combine 16x and -10x to get 6x.
6x=-25+23
Add 23 to both sides.
6x=-2
Add -25 and 23 to get -2.
x=\frac{-2}{6}
Divide both sides by 6.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}