Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
16\left(x+2\right)-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Multiply both sides of the equation by 64, the least common multiple of 4,64,2.
16x+32-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Use the distributive property to multiply 16 by x+2.
16x+32-\left(2-2x\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Use the distributive property to multiply 2 by 1-x.
16x+32-\left(4-8x+4x^{2}\right)=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
16x+32-4+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
To find the opposite of 4-8x+4x^{2}, find the opposite of each term.
16x+28+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Subtract 4 from 32 to get 28.
24x+28-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Combine 16x and 8x to get 24x.
24x+28-4x^{2}=-64\times \frac{\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
To raise \frac{x+1}{4} to a power, raise both numerator and denominator to the power and then divide.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
Express -64\times \frac{\left(x+1\right)^{2}}{4^{2}} as a single fraction.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\times \frac{1}{2}x+32
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+32x+32
Multiply 64 and \frac{1}{2} to get 32.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+\frac{\left(32x+32\right)\times 4^{2}}{4^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 32x+32 times \frac{4^{2}}{4^{2}}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}}{4^{2}}
Since \frac{-64\left(x+1\right)^{2}}{4^{2}} and \frac{\left(32x+32\right)\times 4^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
24x+28-4x^{2}=\frac{-64x^{2}-128x-64+512x+512}{4^{2}}
Do the multiplications in -64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{4^{2}}
Combine like terms in -64x^{2}-128x-64+512x+512.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{16}
Calculate 4 to the power of 2 and get 16.
24x+28-4x^{2}=-4x^{2}+24x+28
Divide each term of -64x^{2}+384x+448 by 16 to get -4x^{2}+24x+28.
24x+28-4x^{2}+4x^{2}=24x+28
Add 4x^{2} to both sides.
24x+28=24x+28
Combine -4x^{2} and 4x^{2} to get 0.
24x+28-24x=28
Subtract 24x from both sides.
28=28
Combine 24x and -24x to get 0.
\text{true}
Compare 28 and 28.
x\in \mathrm{C}
This is true for any x.
16\left(x+2\right)-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Multiply both sides of the equation by 64, the least common multiple of 4,64,2.
16x+32-\left(2\left(1-x\right)\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Use the distributive property to multiply 16 by x+2.
16x+32-\left(2-2x\right)^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Use the distributive property to multiply 2 by 1-x.
16x+32-\left(4-8x+4x^{2}\right)=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
16x+32-4+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
To find the opposite of 4-8x+4x^{2}, find the opposite of each term.
16x+28+8x-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Subtract 4 from 32 to get 28.
24x+28-4x^{2}=-64\times \left(\frac{x+1}{4}\right)^{2}+64\left(1-\frac{1}{2}\right)x+32
Combine 16x and 8x to get 24x.
24x+28-4x^{2}=-64\times \frac{\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
To raise \frac{x+1}{4} to a power, raise both numerator and denominator to the power and then divide.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\left(1-\frac{1}{2}\right)x+32
Express -64\times \frac{\left(x+1\right)^{2}}{4^{2}} as a single fraction.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+64\times \frac{1}{2}x+32
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+32x+32
Multiply 64 and \frac{1}{2} to get 32.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}}{4^{2}}+\frac{\left(32x+32\right)\times 4^{2}}{4^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 32x+32 times \frac{4^{2}}{4^{2}}.
24x+28-4x^{2}=\frac{-64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}}{4^{2}}
Since \frac{-64\left(x+1\right)^{2}}{4^{2}} and \frac{\left(32x+32\right)\times 4^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
24x+28-4x^{2}=\frac{-64x^{2}-128x-64+512x+512}{4^{2}}
Do the multiplications in -64\left(x+1\right)^{2}+\left(32x+32\right)\times 4^{2}.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{4^{2}}
Combine like terms in -64x^{2}-128x-64+512x+512.
24x+28-4x^{2}=\frac{-64x^{2}+384x+448}{16}
Calculate 4 to the power of 2 and get 16.
24x+28-4x^{2}=-4x^{2}+24x+28
Divide each term of -64x^{2}+384x+448 by 16 to get -4x^{2}+24x+28.
24x+28-4x^{2}+4x^{2}=24x+28
Add 4x^{2} to both sides.
24x+28=24x+28
Combine -4x^{2} and 4x^{2} to get 0.
24x+28-24x=28
Subtract 24x from both sides.
28=28
Combine 24x and -24x to get 0.
\text{true}
Compare 28 and 28.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}