Solve for x
x<-\frac{16}{3}
Graph
Share
Copied to clipboard
3\left(x+2\right)+2\left(x-3\right)>4\left(2x+4\right)
Multiply both sides of the equation by 12, the least common multiple of 4,6,3. Since 12 is positive, the inequality direction remains the same.
3x+6+2\left(x-3\right)>4\left(2x+4\right)
Use the distributive property to multiply 3 by x+2.
3x+6+2x-6>4\left(2x+4\right)
Use the distributive property to multiply 2 by x-3.
5x+6-6>4\left(2x+4\right)
Combine 3x and 2x to get 5x.
5x>4\left(2x+4\right)
Subtract 6 from 6 to get 0.
5x>8x+16
Use the distributive property to multiply 4 by 2x+4.
5x-8x>16
Subtract 8x from both sides.
-3x>16
Combine 5x and -8x to get -3x.
x<-\frac{16}{3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}