Evaluate
-\frac{2x}{x-2}
Expand
-\frac{2x}{x-2}
Graph
Share
Copied to clipboard
\frac{\left(x+2\right)\left(-6x-4x^{2}\right)}{\left(2x+3\right)\left(x^{2}-4\right)}
Divide \frac{x+2}{2x+3} by \frac{x^{2}-4}{-6x-4x^{2}} by multiplying \frac{x+2}{2x+3} by the reciprocal of \frac{x^{2}-4}{-6x-4x^{2}}.
\frac{2x\left(-2x-3\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(2x+3\right)}
Factor the expressions that are not already factored.
\frac{-2x\left(x+2\right)\left(2x+3\right)}{\left(x-2\right)\left(x+2\right)\left(2x+3\right)}
Extract the negative sign in -3-2x.
\frac{-2x}{x-2}
Cancel out \left(x+2\right)\left(2x+3\right) in both numerator and denominator.
\frac{\left(x+2\right)\left(-6x-4x^{2}\right)}{\left(2x+3\right)\left(x^{2}-4\right)}
Divide \frac{x+2}{2x+3} by \frac{x^{2}-4}{-6x-4x^{2}} by multiplying \frac{x+2}{2x+3} by the reciprocal of \frac{x^{2}-4}{-6x-4x^{2}}.
\frac{2x\left(-2x-3\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(2x+3\right)}
Factor the expressions that are not already factored.
\frac{-2x\left(x+2\right)\left(2x+3\right)}{\left(x-2\right)\left(x+2\right)\left(2x+3\right)}
Extract the negative sign in -3-2x.
\frac{-2x}{x-2}
Cancel out \left(x+2\right)\left(2x+3\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}