Solve for x
x = -\frac{12}{11} = -1\frac{1}{11} \approx -1.090909091
Graph
Share
Copied to clipboard
x+2=-10\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right).
x+2=-10x-10
Use the distributive property to multiply -10 by x+1.
x+2+10x=-10
Add 10x to both sides.
11x+2=-10
Combine x and 10x to get 11x.
11x=-10-2
Subtract 2 from both sides.
11x=-12
Subtract 2 from -10 to get -12.
x=\frac{-12}{11}
Divide both sides by 11.
x=-\frac{12}{11}
Fraction \frac{-12}{11} can be rewritten as -\frac{12}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}