Solve for x
x<\frac{6}{17}
Graph
Share
Copied to clipboard
3\left(x+2\right)>2\left(x+3\right)-6\left(1-3x\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3x+6>2\left(x+3\right)-6\left(1-3x\right)
Use the distributive property to multiply 3 by x+2.
3x+6>2x+6-6\left(1-3x\right)
Use the distributive property to multiply 2 by x+3.
3x+6>2x+6-6+18x
Use the distributive property to multiply -6 by 1-3x.
3x+6>2x+18x
Subtract 6 from 6 to get 0.
3x+6>20x
Combine 2x and 18x to get 20x.
3x+6-20x>0
Subtract 20x from both sides.
-17x+6>0
Combine 3x and -20x to get -17x.
-17x>-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
x<\frac{-6}{-17}
Divide both sides by -17. Since -17 is negative, the inequality direction is changed.
x<\frac{6}{17}
Fraction \frac{-6}{-17} can be simplified to \frac{6}{17} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}