Solve for x
x\geq 5
Graph
Share
Copied to clipboard
6\left(x+2\right)+4\left(x-2\right)+3\left(x-1\right)\geq 36+6x
Multiply both sides of the equation by 12, the least common multiple of 2,3,4. Since 12 is positive, the inequality direction remains the same.
6x+12+4\left(x-2\right)+3\left(x-1\right)\geq 36+6x
Use the distributive property to multiply 6 by x+2.
6x+12+4x-8+3\left(x-1\right)\geq 36+6x
Use the distributive property to multiply 4 by x-2.
10x+12-8+3\left(x-1\right)\geq 36+6x
Combine 6x and 4x to get 10x.
10x+4+3\left(x-1\right)\geq 36+6x
Subtract 8 from 12 to get 4.
10x+4+3x-3\geq 36+6x
Use the distributive property to multiply 3 by x-1.
13x+4-3\geq 36+6x
Combine 10x and 3x to get 13x.
13x+1\geq 36+6x
Subtract 3 from 4 to get 1.
13x+1-6x\geq 36
Subtract 6x from both sides.
7x+1\geq 36
Combine 13x and -6x to get 7x.
7x\geq 36-1
Subtract 1 from both sides.
7x\geq 35
Subtract 1 from 36 to get 35.
x\geq \frac{35}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
x\geq 5
Divide 35 by 7 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}