Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+2}{\left(1-x\right)^{2}}+\frac{2}{x\left(x+1\right)}-\frac{1}{1-x}
Factor x+x^{2}.
\frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}+\frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(1-x\right)^{2} and x\left(x+1\right) is x\left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x+2}{\left(1-x\right)^{2}} times \frac{x\left(x+1\right)}{x\left(x+1\right)}. Multiply \frac{2}{x\left(x+1\right)} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{\left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Since \frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}} and \frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Do the multiplications in \left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}.
\frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Combine like terms in x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}-\frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right)\left(-x+1\right)^{2} and 1-x is x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}} times \frac{-x+1}{-x+1}. Multiply \frac{1}{1-x} times \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Since \frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Do the multiplications in \left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Combine like terms in -x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x.
\frac{2\left(x-1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Factor the expressions that are not already factored in \frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{-2\left(-x+1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Extract the negative sign in -1+x.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x^{4}-x^{3}-x^{2}+x}
Expand x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{2x^{3}+5x^{2}-3x+2}{x^{4}-x^{3}-x^{2}+x}
Use the distributive property to multiply -2 by -x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1.
\frac{x+2}{\left(1-x\right)^{2}}+\frac{2}{x\left(x+1\right)}-\frac{1}{1-x}
Factor x+x^{2}.
\frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}+\frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(1-x\right)^{2} and x\left(x+1\right) is x\left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x+2}{\left(1-x\right)^{2}} times \frac{x\left(x+1\right)}{x\left(x+1\right)}. Multiply \frac{2}{x\left(x+1\right)} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{\left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Since \frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}} and \frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Do the multiplications in \left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}.
\frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Combine like terms in x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}-\frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right)\left(-x+1\right)^{2} and 1-x is x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}} times \frac{-x+1}{-x+1}. Multiply \frac{1}{1-x} times \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Since \frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Do the multiplications in \left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Combine like terms in -x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x.
\frac{2\left(x-1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Factor the expressions that are not already factored in \frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{-2\left(-x+1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Extract the negative sign in -1+x.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x^{4}-x^{3}-x^{2}+x}
Expand x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{2x^{3}+5x^{2}-3x+2}{x^{4}-x^{3}-x^{2}+x}
Use the distributive property to multiply -2 by -x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1.