Evaluate
\frac{2x^{3}+5x^{2}-3x+2}{x\left(x+1\right)\left(1-x\right)^{2}}
Expand
-\frac{-2x^{3}-5x^{2}+3x-2}{\left(x-1\right)^{2}\left(x^{2}+x\right)}
Graph
Share
Copied to clipboard
\frac{x+2}{\left(1-x\right)^{2}}+\frac{2}{x\left(x+1\right)}-\frac{1}{1-x}
Factor x+x^{2}.
\frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}+\frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(1-x\right)^{2} and x\left(x+1\right) is x\left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x+2}{\left(1-x\right)^{2}} times \frac{x\left(x+1\right)}{x\left(x+1\right)}. Multiply \frac{2}{x\left(x+1\right)} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{\left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Since \frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}} and \frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Do the multiplications in \left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}.
\frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Combine like terms in x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}-\frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right)\left(-x+1\right)^{2} and 1-x is x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}} times \frac{-x+1}{-x+1}. Multiply \frac{1}{1-x} times \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Since \frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Do the multiplications in \left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Combine like terms in -x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x.
\frac{2\left(x-1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Factor the expressions that are not already factored in \frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{-2\left(-x+1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Extract the negative sign in -1+x.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x^{4}-x^{3}-x^{2}+x}
Expand x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{2x^{3}+5x^{2}-3x+2}{x^{4}-x^{3}-x^{2}+x}
Use the distributive property to multiply -2 by -x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1.
\frac{x+2}{\left(1-x\right)^{2}}+\frac{2}{x\left(x+1\right)}-\frac{1}{1-x}
Factor x+x^{2}.
\frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}+\frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(1-x\right)^{2} and x\left(x+1\right) is x\left(x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x+2}{\left(1-x\right)^{2}} times \frac{x\left(x+1\right)}{x\left(x+1\right)}. Multiply \frac{2}{x\left(x+1\right)} times \frac{\left(-x+1\right)^{2}}{\left(-x+1\right)^{2}}.
\frac{\left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Since \frac{\left(x+2\right)x\left(x+1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}} and \frac{2\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Do the multiplications in \left(x+2\right)x\left(x+1\right)+2\left(-x+1\right)^{2}.
\frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}}-\frac{1}{1-x}
Combine like terms in x^{3}+x^{2}+2x^{2}+2x+2x^{2}-4x+2.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}-\frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right)\left(-x+1\right)^{2} and 1-x is x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}. Multiply \frac{x^{3}+5x^{2}-2x+2}{x\left(x+1\right)\left(-x+1\right)^{2}} times \frac{-x+1}{-x+1}. Multiply \frac{1}{1-x} times \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)^{2}}.
\frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Since \frac{\left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} and \frac{x\left(x+1\right)\left(-x+1\right)^{2}}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Do the multiplications in \left(x^{3}+5x^{2}-2x+2\right)\left(-x+1\right)-x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Combine like terms in -x^{4}+x^{3}-5x^{3}+5x^{2}+2x^{2}-2x-2x+2-x^{4}+2x^{3}-x^{2}-x^{3}+2x^{2}-x.
\frac{2\left(x-1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Factor the expressions that are not already factored in \frac{-2x^{4}-3x^{3}+8x^{2}-5x+2}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}.
\frac{-2\left(-x+1\right)\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)\left(-x+1\right)^{2}}
Extract the negative sign in -1+x.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x\left(x+1\right)\left(-x+1\right)^{2}}
Cancel out -x+1 in both numerator and denominator.
\frac{-2\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1\right)}{x^{4}-x^{3}-x^{2}+x}
Expand x\left(x+1\right)\left(-x+1\right)^{2}.
\frac{2x^{3}+5x^{2}-3x+2}{x^{4}-x^{3}-x^{2}+x}
Use the distributive property to multiply -2 by -x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}