\frac { x + 15 } { x - \sqrt { 81 } } = \frac { \sqrt { 144 } + 1,4 } { \sqrt { 81 } - \sqrt { 0,16 } }
Solve for x
x=52
Graph
Share
Copied to clipboard
\frac{x+15}{x-9}=\frac{\sqrt{144}+1,4}{\sqrt{81}-\sqrt{0,16}}
Calculate the square root of 81 and get 9.
\frac{x+15}{x-9}=\frac{12+1,4}{\sqrt{81}-\sqrt{0,16}}
Calculate the square root of 144 and get 12.
\frac{x+15}{x-9}=\frac{13,4}{\sqrt{81}-\sqrt{0,16}}
Add 12 and 1,4 to get 13,4.
\frac{x+15}{x-9}=\frac{13,4}{9-\sqrt{0,16}}
Calculate the square root of 81 and get 9.
\frac{x+15}{x-9}=\frac{13,4}{9-0,4}
Calculate the square root of 0,16 and get 0,4.
\frac{x+15}{x-9}=\frac{13,4}{8,6}
Subtract 0,4 from 9 to get 8,6.
\frac{x+15}{x-9}=\frac{134}{86}
Expand \frac{13,4}{8,6} by multiplying both numerator and the denominator by 10.
\frac{x+15}{x-9}=\frac{67}{43}
Reduce the fraction \frac{134}{86} to lowest terms by extracting and canceling out 2.
43\left(x+15\right)=67\left(x-9\right)
Variable x cannot be equal to 9 since division by zero is not defined. Multiply both sides of the equation by 43\left(x-9\right), the least common multiple of x-9;43.
43x+645=67\left(x-9\right)
Use the distributive property to multiply 43 by x+15.
43x+645=67x-603
Use the distributive property to multiply 67 by x-9.
43x+645-67x=-603
Subtract 67x from both sides.
-24x+645=-603
Combine 43x and -67x to get -24x.
-24x=-603-645
Subtract 645 from both sides.
-24x=-1248
Subtract 645 from -603 to get -1248.
x=\frac{-1248}{-24}
Divide both sides by -24.
x=52
Divide -1248 by -24 to get 52.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}