Solve for x
x = \frac{61}{10} = 6\frac{1}{10} = 6.1
Graph
Share
Copied to clipboard
x+1=71\left(x-6\right)
Variable x cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by x-6.
x+1=71x-426
Use the distributive property to multiply 71 by x-6.
x+1-71x=-426
Subtract 71x from both sides.
-70x+1=-426
Combine x and -71x to get -70x.
-70x=-426-1
Subtract 1 from both sides.
-70x=-427
Subtract 1 from -426 to get -427.
x=\frac{-427}{-70}
Divide both sides by -70.
x=\frac{61}{10}
Reduce the fraction \frac{-427}{-70} to lowest terms by extracting and canceling out -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}