Solve for x
x=5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { x + 1 } { x - 2 } = \frac { 3 x - 7 } { x - 1 }
Share
Copied to clipboard
\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(3x-7\right)
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-2,x-1.
x^{2}-1=\left(x-2\right)\left(3x-7\right)
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1=3x^{2}-13x+14
Use the distributive property to multiply x-2 by 3x-7 and combine like terms.
x^{2}-1-3x^{2}=-13x+14
Subtract 3x^{2} from both sides.
-2x^{2}-1=-13x+14
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-1+13x=14
Add 13x to both sides.
-2x^{2}-1+13x-14=0
Subtract 14 from both sides.
-2x^{2}-15+13x=0
Subtract 14 from -1 to get -15.
-2x^{2}+13x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 13 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
Square 13.
x=\frac{-13±\sqrt{169+8\left(-15\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-13±\sqrt{169-120}}{2\left(-2\right)}
Multiply 8 times -15.
x=\frac{-13±\sqrt{49}}{2\left(-2\right)}
Add 169 to -120.
x=\frac{-13±7}{2\left(-2\right)}
Take the square root of 49.
x=\frac{-13±7}{-4}
Multiply 2 times -2.
x=-\frac{6}{-4}
Now solve the equation x=\frac{-13±7}{-4} when ± is plus. Add -13 to 7.
x=\frac{3}{2}
Reduce the fraction \frac{-6}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{20}{-4}
Now solve the equation x=\frac{-13±7}{-4} when ± is minus. Subtract 7 from -13.
x=5
Divide -20 by -4.
x=\frac{3}{2} x=5
The equation is now solved.
\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(3x-7\right)
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-2,x-1.
x^{2}-1=\left(x-2\right)\left(3x-7\right)
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-1=3x^{2}-13x+14
Use the distributive property to multiply x-2 by 3x-7 and combine like terms.
x^{2}-1-3x^{2}=-13x+14
Subtract 3x^{2} from both sides.
-2x^{2}-1=-13x+14
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}-1+13x=14
Add 13x to both sides.
-2x^{2}+13x=14+1
Add 1 to both sides.
-2x^{2}+13x=15
Add 14 and 1 to get 15.
\frac{-2x^{2}+13x}{-2}=\frac{15}{-2}
Divide both sides by -2.
x^{2}+\frac{13}{-2}x=\frac{15}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{13}{2}x=\frac{15}{-2}
Divide 13 by -2.
x^{2}-\frac{13}{2}x=-\frac{15}{2}
Divide 15 by -2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{15}{2}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{15}{2}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{49}{16}
Add -\frac{15}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{7}{4} x-\frac{13}{4}=-\frac{7}{4}
Simplify.
x=5 x=\frac{3}{2}
Add \frac{13}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}