Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{x-2}+\frac{2+x}{x^{2}-3x}
Combine -4x and x to get -3x.
\frac{x+1}{x-2}+\frac{2+x}{x\left(x-3\right)}
Factor x^{2}-3x.
\frac{\left(x+1\right)x\left(x-3\right)}{x\left(x-3\right)\left(x-2\right)}+\frac{\left(2+x\right)\left(x-2\right)}{x\left(x-3\right)\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x\left(x-3\right) is x\left(x-3\right)\left(x-2\right). Multiply \frac{x+1}{x-2} times \frac{x\left(x-3\right)}{x\left(x-3\right)}. Multiply \frac{2+x}{x\left(x-3\right)} times \frac{x-2}{x-2}.
\frac{\left(x+1\right)x\left(x-3\right)+\left(2+x\right)\left(x-2\right)}{x\left(x-3\right)\left(x-2\right)}
Since \frac{\left(x+1\right)x\left(x-3\right)}{x\left(x-3\right)\left(x-2\right)} and \frac{\left(2+x\right)\left(x-2\right)}{x\left(x-3\right)\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-3x^{2}+x^{2}-3x+2x-4+x^{2}-2x}{x\left(x-3\right)\left(x-2\right)}
Do the multiplications in \left(x+1\right)x\left(x-3\right)+\left(2+x\right)\left(x-2\right).
\frac{x^{3}-x^{2}-3x-4}{x\left(x-3\right)\left(x-2\right)}
Combine like terms in x^{3}-3x^{2}+x^{2}-3x+2x-4+x^{2}-2x.
\frac{x^{3}-x^{2}-3x-4}{x^{3}-5x^{2}+6x}
Expand x\left(x-3\right)\left(x-2\right).
\frac{x+1}{x-2}+\frac{2+x}{x^{2}-3x}
Combine -4x and x to get -3x.
\frac{x+1}{x-2}+\frac{2+x}{x\left(x-3\right)}
Factor x^{2}-3x.
\frac{\left(x+1\right)x\left(x-3\right)}{x\left(x-3\right)\left(x-2\right)}+\frac{\left(2+x\right)\left(x-2\right)}{x\left(x-3\right)\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x\left(x-3\right) is x\left(x-3\right)\left(x-2\right). Multiply \frac{x+1}{x-2} times \frac{x\left(x-3\right)}{x\left(x-3\right)}. Multiply \frac{2+x}{x\left(x-3\right)} times \frac{x-2}{x-2}.
\frac{\left(x+1\right)x\left(x-3\right)+\left(2+x\right)\left(x-2\right)}{x\left(x-3\right)\left(x-2\right)}
Since \frac{\left(x+1\right)x\left(x-3\right)}{x\left(x-3\right)\left(x-2\right)} and \frac{\left(2+x\right)\left(x-2\right)}{x\left(x-3\right)\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}-3x^{2}+x^{2}-3x+2x-4+x^{2}-2x}{x\left(x-3\right)\left(x-2\right)}
Do the multiplications in \left(x+1\right)x\left(x-3\right)+\left(2+x\right)\left(x-2\right).
\frac{x^{3}-x^{2}-3x-4}{x\left(x-3\right)\left(x-2\right)}
Combine like terms in x^{3}-3x^{2}+x^{2}-3x+2x-4+x^{2}-2x.
\frac{x^{3}-x^{2}-3x-4}{x^{3}-5x^{2}+6x}
Expand x\left(x-3\right)\left(x-2\right).