Solve for x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Graph
Share
Copied to clipboard
\left(2x-7\right)\left(x+1\right)=\left(x-1\right)\times 2x
Variable x cannot be equal to any of the values 1,\frac{7}{2} since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(2x-7\right), the least common multiple of x-1,2x-7.
2x^{2}-5x-7=\left(x-1\right)\times 2x
Use the distributive property to multiply 2x-7 by x+1 and combine like terms.
2x^{2}-5x-7=\left(2x-2\right)x
Use the distributive property to multiply x-1 by 2.
2x^{2}-5x-7=2x^{2}-2x
Use the distributive property to multiply 2x-2 by x.
2x^{2}-5x-7-2x^{2}=-2x
Subtract 2x^{2} from both sides.
-5x-7=-2x
Combine 2x^{2} and -2x^{2} to get 0.
-5x-7+2x=0
Add 2x to both sides.
-3x-7=0
Combine -5x and 2x to get -3x.
-3x=7
Add 7 to both sides. Anything plus zero gives itself.
x=\frac{7}{-3}
Divide both sides by -3.
x=-\frac{7}{3}
Fraction \frac{7}{-3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}