Solve for x
x=\frac{\sqrt{10}}{5}\approx 0.632455532
x=-\frac{\sqrt{10}}{5}\approx -0.632455532
Graph
Share
Copied to clipboard
\left(x+1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)\left(x-1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x^{2}-1,x+1.
\left(x+1\right)^{2}+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)\left(x-1\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
\left(x+1\right)^{2}+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}+2x+1+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+\left(x^{2}-1\right)\times 4=x^{2}-\left(x-1\right)^{2}
Use the distributive property to multiply x-1 by x+1 and combine like terms.
x^{2}+2x+1+4x^{2}-4=x^{2}-\left(x-1\right)^{2}
Use the distributive property to multiply x^{2}-1 by 4.
5x^{2}+2x+1-4=x^{2}-\left(x-1\right)^{2}
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+2x-3=x^{2}-\left(x-1\right)^{2}
Subtract 4 from 1 to get -3.
5x^{2}+2x-3=x^{2}-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
5x^{2}+2x-3=x^{2}-x^{2}+2x-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
5x^{2}+2x-3=2x-1
Combine x^{2} and -x^{2} to get 0.
5x^{2}+2x-3-2x=-1
Subtract 2x from both sides.
5x^{2}-3=-1
Combine 2x and -2x to get 0.
5x^{2}=-1+3
Add 3 to both sides.
5x^{2}=2
Add -1 and 3 to get 2.
x^{2}=\frac{2}{5}
Divide both sides by 5.
x=\frac{\sqrt{10}}{5} x=-\frac{\sqrt{10}}{5}
Take the square root of both sides of the equation.
\left(x+1\right)\left(x+1\right)+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)\left(x-1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x^{2}-1,x+1.
\left(x+1\right)^{2}+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)\left(x-1\right)
Multiply x+1 and x+1 to get \left(x+1\right)^{2}.
\left(x+1\right)^{2}+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
x^{2}+2x+1+\left(x-1\right)\left(x+1\right)\times 4=x^{2}-\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+\left(x^{2}-1\right)\times 4=x^{2}-\left(x-1\right)^{2}
Use the distributive property to multiply x-1 by x+1 and combine like terms.
x^{2}+2x+1+4x^{2}-4=x^{2}-\left(x-1\right)^{2}
Use the distributive property to multiply x^{2}-1 by 4.
5x^{2}+2x+1-4=x^{2}-\left(x-1\right)^{2}
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+2x-3=x^{2}-\left(x-1\right)^{2}
Subtract 4 from 1 to get -3.
5x^{2}+2x-3=x^{2}-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
5x^{2}+2x-3=x^{2}-x^{2}+2x-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
5x^{2}+2x-3=2x-1
Combine x^{2} and -x^{2} to get 0.
5x^{2}+2x-3-2x=-1
Subtract 2x from both sides.
5x^{2}-3=-1
Combine 2x and -2x to get 0.
5x^{2}-3+1=0
Add 1 to both sides.
5x^{2}-2=0
Add -3 and 1 to get -2.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-2\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-2\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-2\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{40}}{2\times 5}
Multiply -20 times -2.
x=\frac{0±2\sqrt{10}}{2\times 5}
Take the square root of 40.
x=\frac{0±2\sqrt{10}}{10}
Multiply 2 times 5.
x=\frac{\sqrt{10}}{5}
Now solve the equation x=\frac{0±2\sqrt{10}}{10} when ± is plus.
x=-\frac{\sqrt{10}}{5}
Now solve the equation x=\frac{0±2\sqrt{10}}{10} when ± is minus.
x=\frac{\sqrt{10}}{5} x=-\frac{\sqrt{10}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}