Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x+2\right)\left(x+1\right)+x\left(x-1\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Variable x cannot be equal to any of the values -2,0,1 since division by zero is not defined. Multiply both sides of the equation by x\left(x-1\right)\left(x+2\right), the least common multiple of x-1,x+2,x.
\left(x^{2}+2x\right)\left(x+1\right)+x\left(x-1\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x by x+2.
x^{3}+3x^{2}+2x+x\left(x-1\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{2}+2x by x+1 and combine like terms.
x^{3}+3x^{2}+2x+\left(x^{2}-x\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x by x-1.
x^{3}+3x^{2}+2x+x^{3}-3x^{2}+2x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{2}-x by x-2 and combine like terms.
2x^{3}+3x^{2}+2x-3x^{2}+2x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Combine x^{3} and x^{3} to get 2x^{3}.
2x^{3}+2x+2x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Combine 3x^{2} and -3x^{2} to get 0.
2x^{3}+4x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Combine 2x and 2x to get 4x.
2x^{3}+4x=\left(x^{2}-x\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x by x-1.
2x^{3}+4x=\left(x^{3}+x^{2}-2x\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{2}-x by x+2 and combine like terms.
2x^{3}+4x=4x^{3}+4x^{2}-8x-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{3}+x^{2}-2x by 4.
2x^{3}+4x=4x^{3}+4x^{2}-8x-\left(x^{2}+x-2\right)\left(2x+3\right)
Use the distributive property to multiply x-1 by x+2 and combine like terms.
2x^{3}+4x=4x^{3}+4x^{2}-8x-\left(2x^{3}+5x^{2}-x-6\right)
Use the distributive property to multiply x^{2}+x-2 by 2x+3 and combine like terms.
2x^{3}+4x=4x^{3}+4x^{2}-8x-2x^{3}-5x^{2}+x+6
To find the opposite of 2x^{3}+5x^{2}-x-6, find the opposite of each term.
2x^{3}+4x=2x^{3}+4x^{2}-8x-5x^{2}+x+6
Combine 4x^{3} and -2x^{3} to get 2x^{3}.
2x^{3}+4x=2x^{3}-x^{2}-8x+x+6
Combine 4x^{2} and -5x^{2} to get -x^{2}.
2x^{3}+4x=2x^{3}-x^{2}-7x+6
Combine -8x and x to get -7x.
2x^{3}+4x-2x^{3}=-x^{2}-7x+6
Subtract 2x^{3} from both sides.
4x=-x^{2}-7x+6
Combine 2x^{3} and -2x^{3} to get 0.
4x+x^{2}=-7x+6
Add x^{2} to both sides.
4x+x^{2}+7x=6
Add 7x to both sides.
11x+x^{2}=6
Combine 4x and 7x to get 11x.
11x+x^{2}-6=0
Subtract 6 from both sides.
x^{2}+11x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\left(-6\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 11 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-6\right)}}{2}
Square 11.
x=\frac{-11±\sqrt{121+24}}{2}
Multiply -4 times -6.
x=\frac{-11±\sqrt{145}}{2}
Add 121 to 24.
x=\frac{\sqrt{145}-11}{2}
Now solve the equation x=\frac{-11±\sqrt{145}}{2} when ± is plus. Add -11 to \sqrt{145}.
x=\frac{-\sqrt{145}-11}{2}
Now solve the equation x=\frac{-11±\sqrt{145}}{2} when ± is minus. Subtract \sqrt{145} from -11.
x=\frac{\sqrt{145}-11}{2} x=\frac{-\sqrt{145}-11}{2}
The equation is now solved.
x\left(x+2\right)\left(x+1\right)+x\left(x-1\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Variable x cannot be equal to any of the values -2,0,1 since division by zero is not defined. Multiply both sides of the equation by x\left(x-1\right)\left(x+2\right), the least common multiple of x-1,x+2,x.
\left(x^{2}+2x\right)\left(x+1\right)+x\left(x-1\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x by x+2.
x^{3}+3x^{2}+2x+x\left(x-1\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{2}+2x by x+1 and combine like terms.
x^{3}+3x^{2}+2x+\left(x^{2}-x\right)\left(x-2\right)=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x by x-1.
x^{3}+3x^{2}+2x+x^{3}-3x^{2}+2x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{2}-x by x-2 and combine like terms.
2x^{3}+3x^{2}+2x-3x^{2}+2x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Combine x^{3} and x^{3} to get 2x^{3}.
2x^{3}+2x+2x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Combine 3x^{2} and -3x^{2} to get 0.
2x^{3}+4x=x\left(x-1\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Combine 2x and 2x to get 4x.
2x^{3}+4x=\left(x^{2}-x\right)\left(x+2\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x by x-1.
2x^{3}+4x=\left(x^{3}+x^{2}-2x\right)\times 4-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{2}-x by x+2 and combine like terms.
2x^{3}+4x=4x^{3}+4x^{2}-8x-\left(x-1\right)\left(x+2\right)\left(2x+3\right)
Use the distributive property to multiply x^{3}+x^{2}-2x by 4.
2x^{3}+4x=4x^{3}+4x^{2}-8x-\left(x^{2}+x-2\right)\left(2x+3\right)
Use the distributive property to multiply x-1 by x+2 and combine like terms.
2x^{3}+4x=4x^{3}+4x^{2}-8x-\left(2x^{3}+5x^{2}-x-6\right)
Use the distributive property to multiply x^{2}+x-2 by 2x+3 and combine like terms.
2x^{3}+4x=4x^{3}+4x^{2}-8x-2x^{3}-5x^{2}+x+6
To find the opposite of 2x^{3}+5x^{2}-x-6, find the opposite of each term.
2x^{3}+4x=2x^{3}+4x^{2}-8x-5x^{2}+x+6
Combine 4x^{3} and -2x^{3} to get 2x^{3}.
2x^{3}+4x=2x^{3}-x^{2}-8x+x+6
Combine 4x^{2} and -5x^{2} to get -x^{2}.
2x^{3}+4x=2x^{3}-x^{2}-7x+6
Combine -8x and x to get -7x.
2x^{3}+4x-2x^{3}=-x^{2}-7x+6
Subtract 2x^{3} from both sides.
4x=-x^{2}-7x+6
Combine 2x^{3} and -2x^{3} to get 0.
4x+x^{2}=-7x+6
Add x^{2} to both sides.
4x+x^{2}+7x=6
Add 7x to both sides.
11x+x^{2}=6
Combine 4x and 7x to get 11x.
x^{2}+11x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=6+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=6+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{145}{4}
Add 6 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{145}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{\sqrt{145}}{2} x+\frac{11}{2}=-\frac{\sqrt{145}}{2}
Simplify.
x=\frac{\sqrt{145}-11}{2} x=\frac{-\sqrt{145}-11}{2}
Subtract \frac{11}{2} from both sides of the equation.