Evaluate
\frac{4\left(3-2x\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Expand
-\frac{4\left(2x-3\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Graph
Share
Copied to clipboard
\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}-\frac{\left(x+2\right)x}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+1 is x\left(x+1\right). Multiply \frac{x+1}{x} times \frac{x+1}{x+1}. Multiply \frac{x+2}{x+1} times \frac{x}{x}.
\frac{\left(x+1\right)\left(x+1\right)-\left(x+2\right)x}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
Since \frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} and \frac{\left(x+2\right)x}{x\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x+x+1-x^{2}-2x}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
Do the multiplications in \left(x+1\right)\left(x+1\right)-\left(x+2\right)x.
\frac{1}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
Combine like terms in x^{2}+x+x+1-x^{2}-2x.
\frac{x-3}{x\left(x-3\right)\left(x+1\right)}-\frac{\left(x-4\right)x\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and x-3 is x\left(x-3\right)\left(x+1\right). Multiply \frac{1}{x\left(x+1\right)} times \frac{x-3}{x-3}. Multiply \frac{x-4}{x-3} times \frac{x\left(x+1\right)}{x\left(x+1\right)}.
\frac{x-3-\left(x-4\right)x\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
Since \frac{x-3}{x\left(x-3\right)\left(x+1\right)} and \frac{\left(x-4\right)x\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3-x^{3}-x^{2}+4x^{2}+4x}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
Do the multiplications in x-3-\left(x-4\right)x\left(x+1\right).
\frac{5x-3-x^{3}+3x^{2}}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
Combine like terms in x-3-x^{3}-x^{2}+4x^{2}+4x.
\frac{\left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}+\frac{\left(x-5\right)x\left(x-3\right)\left(x+1\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+1\right) and x-4 is x\left(x-4\right)\left(x-3\right)\left(x+1\right). Multiply \frac{5x-3-x^{3}+3x^{2}}{x\left(x-3\right)\left(x+1\right)} times \frac{x-4}{x-4}. Multiply \frac{x-5}{x-4} times \frac{x\left(x-3\right)\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)}.
\frac{\left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)+\left(x-5\right)x\left(x-3\right)\left(x+1\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Since \frac{\left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)} and \frac{\left(x-5\right)x\left(x-3\right)\left(x+1\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{5x^{2}-20x-3x+12-x^{4}+4x^{3}+3x^{3}-12x^{2}+x^{4}-2x^{3}-3x^{2}-5x^{3}+10x^{2}+15x}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Do the multiplications in \left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)+\left(x-5\right)x\left(x-3\right)\left(x+1\right).
\frac{-8x+12}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Combine like terms in 5x^{2}-20x-3x+12-x^{4}+4x^{3}+3x^{3}-12x^{2}+x^{4}-2x^{3}-3x^{2}-5x^{3}+10x^{2}+15x.
\frac{-8x+12}{x^{4}-6x^{3}+5x^{2}+12x}
Expand x\left(x-4\right)\left(x-3\right)\left(x+1\right).
\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}-\frac{\left(x+2\right)x}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+1 is x\left(x+1\right). Multiply \frac{x+1}{x} times \frac{x+1}{x+1}. Multiply \frac{x+2}{x+1} times \frac{x}{x}.
\frac{\left(x+1\right)\left(x+1\right)-\left(x+2\right)x}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
Since \frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} and \frac{\left(x+2\right)x}{x\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x+x+1-x^{2}-2x}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
Do the multiplications in \left(x+1\right)\left(x+1\right)-\left(x+2\right)x.
\frac{1}{x\left(x+1\right)}-\frac{x-4}{x-3}+\frac{x-5}{x-4}
Combine like terms in x^{2}+x+x+1-x^{2}-2x.
\frac{x-3}{x\left(x-3\right)\left(x+1\right)}-\frac{\left(x-4\right)x\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and x-3 is x\left(x-3\right)\left(x+1\right). Multiply \frac{1}{x\left(x+1\right)} times \frac{x-3}{x-3}. Multiply \frac{x-4}{x-3} times \frac{x\left(x+1\right)}{x\left(x+1\right)}.
\frac{x-3-\left(x-4\right)x\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
Since \frac{x-3}{x\left(x-3\right)\left(x+1\right)} and \frac{\left(x-4\right)x\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3-x^{3}-x^{2}+4x^{2}+4x}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
Do the multiplications in x-3-\left(x-4\right)x\left(x+1\right).
\frac{5x-3-x^{3}+3x^{2}}{x\left(x-3\right)\left(x+1\right)}+\frac{x-5}{x-4}
Combine like terms in x-3-x^{3}-x^{2}+4x^{2}+4x.
\frac{\left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}+\frac{\left(x-5\right)x\left(x-3\right)\left(x+1\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-3\right)\left(x+1\right) and x-4 is x\left(x-4\right)\left(x-3\right)\left(x+1\right). Multiply \frac{5x-3-x^{3}+3x^{2}}{x\left(x-3\right)\left(x+1\right)} times \frac{x-4}{x-4}. Multiply \frac{x-5}{x-4} times \frac{x\left(x-3\right)\left(x+1\right)}{x\left(x-3\right)\left(x+1\right)}.
\frac{\left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)+\left(x-5\right)x\left(x-3\right)\left(x+1\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Since \frac{\left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)} and \frac{\left(x-5\right)x\left(x-3\right)\left(x+1\right)}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{5x^{2}-20x-3x+12-x^{4}+4x^{3}+3x^{3}-12x^{2}+x^{4}-2x^{3}-3x^{2}-5x^{3}+10x^{2}+15x}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Do the multiplications in \left(5x-3-x^{3}+3x^{2}\right)\left(x-4\right)+\left(x-5\right)x\left(x-3\right)\left(x+1\right).
\frac{-8x+12}{x\left(x-4\right)\left(x-3\right)\left(x+1\right)}
Combine like terms in 5x^{2}-20x-3x+12-x^{4}+4x^{3}+3x^{3}-12x^{2}+x^{4}-2x^{3}-3x^{2}-5x^{3}+10x^{2}+15x.
\frac{-8x+12}{x^{4}-6x^{3}+5x^{2}+12x}
Expand x\left(x-4\right)\left(x-3\right)\left(x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}