Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{x^{2}-9}-\frac{2x}{x^{2}+2x-15}+\frac{x^{2}+3x+9}{\left(x-3\right)\left(x^{2}+3x+9\right)}
Factor the expressions that are not already factored in \frac{x^{2}+3x+9}{x^{3}-27}.
\frac{x+1}{x^{2}-9}-\frac{2x}{x^{2}+2x-15}+\frac{1}{x-3}
Cancel out x^{2}+3x+9 in both numerator and denominator.
\frac{x+1}{\left(x-3\right)\left(x+3\right)}-\frac{2x}{\left(x-3\right)\left(x+5\right)}+\frac{1}{x-3}
Factor x^{2}-9. Factor x^{2}+2x-15.
\frac{\left(x+1\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}-\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and \left(x-3\right)\left(x+5\right) is \left(x-3\right)\left(x+3\right)\left(x+5\right). Multiply \frac{x+1}{\left(x-3\right)\left(x+3\right)} times \frac{x+5}{x+5}. Multiply \frac{2x}{\left(x-3\right)\left(x+5\right)} times \frac{x+3}{x+3}.
\frac{\left(x+1\right)\left(x+5\right)-2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
Since \frac{\left(x+1\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} and \frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+5x+x+5-2x^{2}-6x}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
Do the multiplications in \left(x+1\right)\left(x+5\right)-2x\left(x+3\right).
\frac{-x^{2}+5}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
Combine like terms in x^{2}+5x+x+5-2x^{2}-6x.
\frac{-x^{2}+5}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right)\left(x+5\right) and x-3 is \left(x-3\right)\left(x+3\right)\left(x+5\right). Multiply \frac{1}{x-3} times \frac{\left(x+3\right)\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}.
\frac{-x^{2}+5+\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
Since \frac{-x^{2}+5}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} and \frac{\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+5+x^{2}+5x+3x+15}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
Do the multiplications in -x^{2}+5+\left(x+3\right)\left(x+5\right).
\frac{20+8x}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
Combine like terms in -x^{2}+5+x^{2}+5x+3x+15.
\frac{20+8x}{x^{3}+5x^{2}-9x-45}
Expand \left(x-3\right)\left(x+3\right)\left(x+5\right).
\frac{x+1}{x^{2}-9}-\frac{2x}{x^{2}+2x-15}+\frac{x^{2}+3x+9}{\left(x-3\right)\left(x^{2}+3x+9\right)}
Factor the expressions that are not already factored in \frac{x^{2}+3x+9}{x^{3}-27}.
\frac{x+1}{x^{2}-9}-\frac{2x}{x^{2}+2x-15}+\frac{1}{x-3}
Cancel out x^{2}+3x+9 in both numerator and denominator.
\frac{x+1}{\left(x-3\right)\left(x+3\right)}-\frac{2x}{\left(x-3\right)\left(x+5\right)}+\frac{1}{x-3}
Factor x^{2}-9. Factor x^{2}+2x-15.
\frac{\left(x+1\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}-\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and \left(x-3\right)\left(x+5\right) is \left(x-3\right)\left(x+3\right)\left(x+5\right). Multiply \frac{x+1}{\left(x-3\right)\left(x+3\right)} times \frac{x+5}{x+5}. Multiply \frac{2x}{\left(x-3\right)\left(x+5\right)} times \frac{x+3}{x+3}.
\frac{\left(x+1\right)\left(x+5\right)-2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
Since \frac{\left(x+1\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} and \frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+5x+x+5-2x^{2}-6x}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
Do the multiplications in \left(x+1\right)\left(x+5\right)-2x\left(x+3\right).
\frac{-x^{2}+5}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x-3}
Combine like terms in x^{2}+5x+x+5-2x^{2}-6x.
\frac{-x^{2}+5}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}+\frac{\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right)\left(x+5\right) and x-3 is \left(x-3\right)\left(x+3\right)\left(x+5\right). Multiply \frac{1}{x-3} times \frac{\left(x+3\right)\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}.
\frac{-x^{2}+5+\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
Since \frac{-x^{2}+5}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} and \frac{\left(x+3\right)\left(x+5\right)}{\left(x-3\right)\left(x+3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+5+x^{2}+5x+3x+15}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
Do the multiplications in -x^{2}+5+\left(x+3\right)\left(x+5\right).
\frac{20+8x}{\left(x-3\right)\left(x+3\right)\left(x+5\right)}
Combine like terms in -x^{2}+5+x^{2}+5x+3x+15.
\frac{20+8x}{x^{3}+5x^{2}-9x-45}
Expand \left(x-3\right)\left(x+3\right)\left(x+5\right).