Evaluate
\frac{4\left(2x^{2}-5x+1\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Expand
\frac{4\left(2x^{2}-5x+1\right)}{\left(x^{2}-5\right)\left(x^{2}-6x+9\right)}
Graph
Share
Copied to clipboard
\frac{x+1}{\left(x-3\right)^{2}}-\frac{x-1}{x^{2}-5}
Factor x^{2}-6x+9.
\frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)}-\frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and x^{2}-5 is \left(x-3\right)^{2}\left(x^{2}-5\right). Multiply \frac{x+1}{\left(x-3\right)^{2}} times \frac{x^{2}-5}{x^{2}-5}. Multiply \frac{x-1}{x^{2}-5} times \frac{\left(x-3\right)^{2}}{\left(x-3\right)^{2}}.
\frac{\left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Since \frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)} and \frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Do the multiplications in \left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}.
\frac{-20x+8x^{2}+4}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Combine like terms in x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9.
\frac{-20x+8x^{2}+4}{x^{4}-6x^{3}+4x^{2}+30x-45}
Expand \left(x-3\right)^{2}\left(x^{2}-5\right).
\frac{x+1}{\left(x-3\right)^{2}}-\frac{x-1}{x^{2}-5}
Factor x^{2}-6x+9.
\frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)}-\frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and x^{2}-5 is \left(x-3\right)^{2}\left(x^{2}-5\right). Multiply \frac{x+1}{\left(x-3\right)^{2}} times \frac{x^{2}-5}{x^{2}-5}. Multiply \frac{x-1}{x^{2}-5} times \frac{\left(x-3\right)^{2}}{\left(x-3\right)^{2}}.
\frac{\left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Since \frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)} and \frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Do the multiplications in \left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}.
\frac{-20x+8x^{2}+4}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Combine like terms in x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9.
\frac{-20x+8x^{2}+4}{x^{4}-6x^{3}+4x^{2}+30x-45}
Expand \left(x-3\right)^{2}\left(x^{2}-5\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}