Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{\left(x-3\right)^{2}}-\frac{x-1}{x^{2}-5}
Factor x^{2}-6x+9.
\frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)}-\frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and x^{2}-5 is \left(x-3\right)^{2}\left(x^{2}-5\right). Multiply \frac{x+1}{\left(x-3\right)^{2}} times \frac{x^{2}-5}{x^{2}-5}. Multiply \frac{x-1}{x^{2}-5} times \frac{\left(x-3\right)^{2}}{\left(x-3\right)^{2}}.
\frac{\left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Since \frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)} and \frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Do the multiplications in \left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}.
\frac{-20x+8x^{2}+4}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Combine like terms in x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9.
\frac{-20x+8x^{2}+4}{x^{4}-6x^{3}+4x^{2}+30x-45}
Expand \left(x-3\right)^{2}\left(x^{2}-5\right).
\frac{x+1}{\left(x-3\right)^{2}}-\frac{x-1}{x^{2}-5}
Factor x^{2}-6x+9.
\frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)}-\frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)^{2} and x^{2}-5 is \left(x-3\right)^{2}\left(x^{2}-5\right). Multiply \frac{x+1}{\left(x-3\right)^{2}} times \frac{x^{2}-5}{x^{2}-5}. Multiply \frac{x-1}{x^{2}-5} times \frac{\left(x-3\right)^{2}}{\left(x-3\right)^{2}}.
\frac{\left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Since \frac{\left(x+1\right)\left(x^{2}-5\right)}{\left(x-3\right)^{2}\left(x^{2}-5\right)} and \frac{\left(x-1\right)\left(x-3\right)^{2}}{\left(x-3\right)^{2}\left(x^{2}-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Do the multiplications in \left(x+1\right)\left(x^{2}-5\right)-\left(x-1\right)\left(x-3\right)^{2}.
\frac{-20x+8x^{2}+4}{\left(x-3\right)^{2}\left(x^{2}-5\right)}
Combine like terms in x^{3}-5x+x^{2}-5-x^{3}+6x^{2}-9x+x^{2}-6x+9.
\frac{-20x+8x^{2}+4}{x^{4}-6x^{3}+4x^{2}+30x-45}
Expand \left(x-3\right)^{2}\left(x^{2}-5\right).