Solve for x
x=2\sqrt{3}+5\approx 8.464101615
x=5-2\sqrt{3}\approx 1.535898385
Graph
Share
Copied to clipboard
\left(x-1\right)^{2}\left(x+1\right)-\left(x-3\right)\left(x-1\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Variable x cannot be equal to any of the values 1,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}\left(x-1\right)^{2}, the least common multiple of x^{2}-6x+9,x^{2}-4x+3,x^{2}-2x+1.
\left(x^{2}-2x+1\right)\left(x+1\right)-\left(x-3\right)\left(x-1\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{3}-x^{2}-x+1-\left(x-3\right)\left(x-1\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Use the distributive property to multiply x^{2}-2x+1 by x+1 and combine like terms.
x^{3}-x^{2}-x+1-\left(x^{2}-4x+3\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Use the distributive property to multiply x-3 by x-1 and combine like terms.
x^{3}-x^{2}-x+1-\left(x^{3}-x^{2}-9x+9\right)=\left(x-3\right)^{2}\times 2
Use the distributive property to multiply x^{2}-4x+3 by x+3 and combine like terms.
x^{3}-x^{2}-x+1-x^{3}+x^{2}+9x-9=\left(x-3\right)^{2}\times 2
To find the opposite of x^{3}-x^{2}-9x+9, find the opposite of each term.
-x^{2}-x+1+x^{2}+9x-9=\left(x-3\right)^{2}\times 2
Combine x^{3} and -x^{3} to get 0.
-x+1+9x-9=\left(x-3\right)^{2}\times 2
Combine -x^{2} and x^{2} to get 0.
8x+1-9=\left(x-3\right)^{2}\times 2
Combine -x and 9x to get 8x.
8x-8=\left(x-3\right)^{2}\times 2
Subtract 9 from 1 to get -8.
8x-8=\left(x^{2}-6x+9\right)\times 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
8x-8=2x^{2}-12x+18
Use the distributive property to multiply x^{2}-6x+9 by 2.
8x-8-2x^{2}=-12x+18
Subtract 2x^{2} from both sides.
8x-8-2x^{2}+12x=18
Add 12x to both sides.
20x-8-2x^{2}=18
Combine 8x and 12x to get 20x.
20x-8-2x^{2}-18=0
Subtract 18 from both sides.
20x-26-2x^{2}=0
Subtract 18 from -8 to get -26.
-2x^{2}+20x-26=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-2\right)\left(-26\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 20 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-2\right)\left(-26\right)}}{2\left(-2\right)}
Square 20.
x=\frac{-20±\sqrt{400+8\left(-26\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-20±\sqrt{400-208}}{2\left(-2\right)}
Multiply 8 times -26.
x=\frac{-20±\sqrt{192}}{2\left(-2\right)}
Add 400 to -208.
x=\frac{-20±8\sqrt{3}}{2\left(-2\right)}
Take the square root of 192.
x=\frac{-20±8\sqrt{3}}{-4}
Multiply 2 times -2.
x=\frac{8\sqrt{3}-20}{-4}
Now solve the equation x=\frac{-20±8\sqrt{3}}{-4} when ± is plus. Add -20 to 8\sqrt{3}.
x=5-2\sqrt{3}
Divide -20+8\sqrt{3} by -4.
x=\frac{-8\sqrt{3}-20}{-4}
Now solve the equation x=\frac{-20±8\sqrt{3}}{-4} when ± is minus. Subtract 8\sqrt{3} from -20.
x=2\sqrt{3}+5
Divide -20-8\sqrt{3} by -4.
x=5-2\sqrt{3} x=2\sqrt{3}+5
The equation is now solved.
\left(x-1\right)^{2}\left(x+1\right)-\left(x-3\right)\left(x-1\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Variable x cannot be equal to any of the values 1,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)^{2}\left(x-1\right)^{2}, the least common multiple of x^{2}-6x+9,x^{2}-4x+3,x^{2}-2x+1.
\left(x^{2}-2x+1\right)\left(x+1\right)-\left(x-3\right)\left(x-1\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{3}-x^{2}-x+1-\left(x-3\right)\left(x-1\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Use the distributive property to multiply x^{2}-2x+1 by x+1 and combine like terms.
x^{3}-x^{2}-x+1-\left(x^{2}-4x+3\right)\left(x+3\right)=\left(x-3\right)^{2}\times 2
Use the distributive property to multiply x-3 by x-1 and combine like terms.
x^{3}-x^{2}-x+1-\left(x^{3}-x^{2}-9x+9\right)=\left(x-3\right)^{2}\times 2
Use the distributive property to multiply x^{2}-4x+3 by x+3 and combine like terms.
x^{3}-x^{2}-x+1-x^{3}+x^{2}+9x-9=\left(x-3\right)^{2}\times 2
To find the opposite of x^{3}-x^{2}-9x+9, find the opposite of each term.
-x^{2}-x+1+x^{2}+9x-9=\left(x-3\right)^{2}\times 2
Combine x^{3} and -x^{3} to get 0.
-x+1+9x-9=\left(x-3\right)^{2}\times 2
Combine -x^{2} and x^{2} to get 0.
8x+1-9=\left(x-3\right)^{2}\times 2
Combine -x and 9x to get 8x.
8x-8=\left(x-3\right)^{2}\times 2
Subtract 9 from 1 to get -8.
8x-8=\left(x^{2}-6x+9\right)\times 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
8x-8=2x^{2}-12x+18
Use the distributive property to multiply x^{2}-6x+9 by 2.
8x-8-2x^{2}=-12x+18
Subtract 2x^{2} from both sides.
8x-8-2x^{2}+12x=18
Add 12x to both sides.
20x-8-2x^{2}=18
Combine 8x and 12x to get 20x.
20x-2x^{2}=18+8
Add 8 to both sides.
20x-2x^{2}=26
Add 18 and 8 to get 26.
-2x^{2}+20x=26
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+20x}{-2}=\frac{26}{-2}
Divide both sides by -2.
x^{2}+\frac{20}{-2}x=\frac{26}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-10x=\frac{26}{-2}
Divide 20 by -2.
x^{2}-10x=-13
Divide 26 by -2.
x^{2}-10x+\left(-5\right)^{2}=-13+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-13+25
Square -5.
x^{2}-10x+25=12
Add -13 to 25.
\left(x-5\right)^{2}=12
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x-5=2\sqrt{3} x-5=-2\sqrt{3}
Simplify.
x=2\sqrt{3}+5 x=5-2\sqrt{3}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}