Solve for x
x=5
x = \frac{35}{11} = 3\frac{2}{11} \approx 3.181818182
Graph
Share
Copied to clipboard
\left(x-4\right)\left(x+1\right)+\left(x-3\right)\left(x+5\right)=\left(x-4\right)\left(x-3\right)\times 13
Variable x cannot be equal to any of the values 2,3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right)\left(x-2\right), the least common multiple of x^{2}-5x+6,x^{2}-6x+8,x-2.
x^{2}-3x-4+\left(x-3\right)\left(x+5\right)=\left(x-4\right)\left(x-3\right)\times 13
Use the distributive property to multiply x-4 by x+1 and combine like terms.
x^{2}-3x-4+x^{2}+2x-15=\left(x-4\right)\left(x-3\right)\times 13
Use the distributive property to multiply x-3 by x+5 and combine like terms.
2x^{2}-3x-4+2x-15=\left(x-4\right)\left(x-3\right)\times 13
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-x-4-15=\left(x-4\right)\left(x-3\right)\times 13
Combine -3x and 2x to get -x.
2x^{2}-x-19=\left(x-4\right)\left(x-3\right)\times 13
Subtract 15 from -4 to get -19.
2x^{2}-x-19=\left(x^{2}-7x+12\right)\times 13
Use the distributive property to multiply x-4 by x-3 and combine like terms.
2x^{2}-x-19=13x^{2}-91x+156
Use the distributive property to multiply x^{2}-7x+12 by 13.
2x^{2}-x-19-13x^{2}=-91x+156
Subtract 13x^{2} from both sides.
-11x^{2}-x-19=-91x+156
Combine 2x^{2} and -13x^{2} to get -11x^{2}.
-11x^{2}-x-19+91x=156
Add 91x to both sides.
-11x^{2}+90x-19=156
Combine -x and 91x to get 90x.
-11x^{2}+90x-19-156=0
Subtract 156 from both sides.
-11x^{2}+90x-175=0
Subtract 156 from -19 to get -175.
x=\frac{-90±\sqrt{90^{2}-4\left(-11\right)\left(-175\right)}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, 90 for b, and -175 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\left(-11\right)\left(-175\right)}}{2\left(-11\right)}
Square 90.
x=\frac{-90±\sqrt{8100+44\left(-175\right)}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{-90±\sqrt{8100-7700}}{2\left(-11\right)}
Multiply 44 times -175.
x=\frac{-90±\sqrt{400}}{2\left(-11\right)}
Add 8100 to -7700.
x=\frac{-90±20}{2\left(-11\right)}
Take the square root of 400.
x=\frac{-90±20}{-22}
Multiply 2 times -11.
x=-\frac{70}{-22}
Now solve the equation x=\frac{-90±20}{-22} when ± is plus. Add -90 to 20.
x=\frac{35}{11}
Reduce the fraction \frac{-70}{-22} to lowest terms by extracting and canceling out 2.
x=-\frac{110}{-22}
Now solve the equation x=\frac{-90±20}{-22} when ± is minus. Subtract 20 from -90.
x=5
Divide -110 by -22.
x=\frac{35}{11} x=5
The equation is now solved.
\left(x-4\right)\left(x+1\right)+\left(x-3\right)\left(x+5\right)=\left(x-4\right)\left(x-3\right)\times 13
Variable x cannot be equal to any of the values 2,3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right)\left(x-2\right), the least common multiple of x^{2}-5x+6,x^{2}-6x+8,x-2.
x^{2}-3x-4+\left(x-3\right)\left(x+5\right)=\left(x-4\right)\left(x-3\right)\times 13
Use the distributive property to multiply x-4 by x+1 and combine like terms.
x^{2}-3x-4+x^{2}+2x-15=\left(x-4\right)\left(x-3\right)\times 13
Use the distributive property to multiply x-3 by x+5 and combine like terms.
2x^{2}-3x-4+2x-15=\left(x-4\right)\left(x-3\right)\times 13
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-x-4-15=\left(x-4\right)\left(x-3\right)\times 13
Combine -3x and 2x to get -x.
2x^{2}-x-19=\left(x-4\right)\left(x-3\right)\times 13
Subtract 15 from -4 to get -19.
2x^{2}-x-19=\left(x^{2}-7x+12\right)\times 13
Use the distributive property to multiply x-4 by x-3 and combine like terms.
2x^{2}-x-19=13x^{2}-91x+156
Use the distributive property to multiply x^{2}-7x+12 by 13.
2x^{2}-x-19-13x^{2}=-91x+156
Subtract 13x^{2} from both sides.
-11x^{2}-x-19=-91x+156
Combine 2x^{2} and -13x^{2} to get -11x^{2}.
-11x^{2}-x-19+91x=156
Add 91x to both sides.
-11x^{2}+90x-19=156
Combine -x and 91x to get 90x.
-11x^{2}+90x=156+19
Add 19 to both sides.
-11x^{2}+90x=175
Add 156 and 19 to get 175.
\frac{-11x^{2}+90x}{-11}=\frac{175}{-11}
Divide both sides by -11.
x^{2}+\frac{90}{-11}x=\frac{175}{-11}
Dividing by -11 undoes the multiplication by -11.
x^{2}-\frac{90}{11}x=\frac{175}{-11}
Divide 90 by -11.
x^{2}-\frac{90}{11}x=-\frac{175}{11}
Divide 175 by -11.
x^{2}-\frac{90}{11}x+\left(-\frac{45}{11}\right)^{2}=-\frac{175}{11}+\left(-\frac{45}{11}\right)^{2}
Divide -\frac{90}{11}, the coefficient of the x term, by 2 to get -\frac{45}{11}. Then add the square of -\frac{45}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{90}{11}x+\frac{2025}{121}=-\frac{175}{11}+\frac{2025}{121}
Square -\frac{45}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{90}{11}x+\frac{2025}{121}=\frac{100}{121}
Add -\frac{175}{11} to \frac{2025}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{45}{11}\right)^{2}=\frac{100}{121}
Factor x^{2}-\frac{90}{11}x+\frac{2025}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{11}\right)^{2}}=\sqrt{\frac{100}{121}}
Take the square root of both sides of the equation.
x-\frac{45}{11}=\frac{10}{11} x-\frac{45}{11}=-\frac{10}{11}
Simplify.
x=5 x=\frac{35}{11}
Add \frac{45}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}