Solve for x
x=-2
x=3
Graph
Share
Copied to clipboard
x\left(x+1\right)+x+6=x\left(2x+1\right)
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+6\right), the least common multiple of x+6,x.
x^{2}+x+x+6=x\left(2x+1\right)
Use the distributive property to multiply x by x+1.
x^{2}+2x+6=x\left(2x+1\right)
Combine x and x to get 2x.
x^{2}+2x+6=2x^{2}+x
Use the distributive property to multiply x by 2x+1.
x^{2}+2x+6-2x^{2}=x
Subtract 2x^{2} from both sides.
-x^{2}+2x+6=x
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+2x+6-x=0
Subtract x from both sides.
-x^{2}+x+6=0
Combine 2x and -x to get x.
a+b=1 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=3 b=-2
The solution is the pair that gives sum 1.
\left(-x^{2}+3x\right)+\left(-2x+6\right)
Rewrite -x^{2}+x+6 as \left(-x^{2}+3x\right)+\left(-2x+6\right).
-x\left(x-3\right)-2\left(x-3\right)
Factor out -x in the first and -2 in the second group.
\left(x-3\right)\left(-x-2\right)
Factor out common term x-3 by using distributive property.
x=3 x=-2
To find equation solutions, solve x-3=0 and -x-2=0.
x\left(x+1\right)+x+6=x\left(2x+1\right)
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+6\right), the least common multiple of x+6,x.
x^{2}+x+x+6=x\left(2x+1\right)
Use the distributive property to multiply x by x+1.
x^{2}+2x+6=x\left(2x+1\right)
Combine x and x to get 2x.
x^{2}+2x+6=2x^{2}+x
Use the distributive property to multiply x by 2x+1.
x^{2}+2x+6-2x^{2}=x
Subtract 2x^{2} from both sides.
-x^{2}+2x+6=x
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+2x+6-x=0
Subtract x from both sides.
-x^{2}+x+6=0
Combine 2x and -x to get x.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
Multiply 4 times 6.
x=\frac{-1±\sqrt{25}}{2\left(-1\right)}
Add 1 to 24.
x=\frac{-1±5}{2\left(-1\right)}
Take the square root of 25.
x=\frac{-1±5}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{-1±5}{-2} when ± is plus. Add -1 to 5.
x=-2
Divide 4 by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-1±5}{-2} when ± is minus. Subtract 5 from -1.
x=3
Divide -6 by -2.
x=-2 x=3
The equation is now solved.
x\left(x+1\right)+x+6=x\left(2x+1\right)
Variable x cannot be equal to any of the values -6,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+6\right), the least common multiple of x+6,x.
x^{2}+x+x+6=x\left(2x+1\right)
Use the distributive property to multiply x by x+1.
x^{2}+2x+6=x\left(2x+1\right)
Combine x and x to get 2x.
x^{2}+2x+6=2x^{2}+x
Use the distributive property to multiply x by 2x+1.
x^{2}+2x+6-2x^{2}=x
Subtract 2x^{2} from both sides.
-x^{2}+2x+6=x
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+2x+6-x=0
Subtract x from both sides.
-x^{2}+x+6=0
Combine 2x and -x to get x.
-x^{2}+x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}+x}{-1}=-\frac{6}{-1}
Divide both sides by -1.
x^{2}+\frac{1}{-1}x=-\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-x=-\frac{6}{-1}
Divide 1 by -1.
x^{2}-x=6
Divide -6 by -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Simplify.
x=3 x=-2
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}