Solve for x
x=\frac{\sqrt{1209}}{6}-\frac{1}{2}\approx 5.295112884
x=-\frac{\sqrt{1209}}{6}-\frac{1}{2}\approx -6.295112884
Graph
Share
Copied to clipboard
\left(x-5\right)\left(x+1\right)+5+x=4\left(x-5\right)\left(x+5\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x+5,5-x.
x^{2}-4x-5+5+x=4\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+1 and combine like terms.
x^{2}-4x+x=4\left(x-5\right)\left(x+5\right)
Add -5 and 5 to get 0.
x^{2}-3x=4\left(x-5\right)\left(x+5\right)
Combine -4x and x to get -3x.
x^{2}-3x=\left(4x-20\right)\left(x+5\right)
Use the distributive property to multiply 4 by x-5.
x^{2}-3x=4x^{2}-100
Use the distributive property to multiply 4x-20 by x+5 and combine like terms.
x^{2}-3x-4x^{2}=-100
Subtract 4x^{2} from both sides.
-3x^{2}-3x=-100
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-3x+100=0
Add 100 to both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-3\right)\times 100}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -3 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-3\right)\times 100}}{2\left(-3\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+12\times 100}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-3\right)±\sqrt{9+1200}}{2\left(-3\right)}
Multiply 12 times 100.
x=\frac{-\left(-3\right)±\sqrt{1209}}{2\left(-3\right)}
Add 9 to 1200.
x=\frac{3±\sqrt{1209}}{2\left(-3\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{1209}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{1209}+3}{-6}
Now solve the equation x=\frac{3±\sqrt{1209}}{-6} when ± is plus. Add 3 to \sqrt{1209}.
x=-\frac{\sqrt{1209}}{6}-\frac{1}{2}
Divide 3+\sqrt{1209} by -6.
x=\frac{3-\sqrt{1209}}{-6}
Now solve the equation x=\frac{3±\sqrt{1209}}{-6} when ± is minus. Subtract \sqrt{1209} from 3.
x=\frac{\sqrt{1209}}{6}-\frac{1}{2}
Divide 3-\sqrt{1209} by -6.
x=-\frac{\sqrt{1209}}{6}-\frac{1}{2} x=\frac{\sqrt{1209}}{6}-\frac{1}{2}
The equation is now solved.
\left(x-5\right)\left(x+1\right)+5+x=4\left(x-5\right)\left(x+5\right)
Variable x cannot be equal to any of the values -5,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+5\right), the least common multiple of x+5,5-x.
x^{2}-4x-5+5+x=4\left(x-5\right)\left(x+5\right)
Use the distributive property to multiply x-5 by x+1 and combine like terms.
x^{2}-4x+x=4\left(x-5\right)\left(x+5\right)
Add -5 and 5 to get 0.
x^{2}-3x=4\left(x-5\right)\left(x+5\right)
Combine -4x and x to get -3x.
x^{2}-3x=\left(4x-20\right)\left(x+5\right)
Use the distributive property to multiply 4 by x-5.
x^{2}-3x=4x^{2}-100
Use the distributive property to multiply 4x-20 by x+5 and combine like terms.
x^{2}-3x-4x^{2}=-100
Subtract 4x^{2} from both sides.
-3x^{2}-3x=-100
Combine x^{2} and -4x^{2} to get -3x^{2}.
\frac{-3x^{2}-3x}{-3}=-\frac{100}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{3}{-3}\right)x=-\frac{100}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+x=-\frac{100}{-3}
Divide -3 by -3.
x^{2}+x=\frac{100}{3}
Divide -100 by -3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{100}{3}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{100}{3}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{403}{12}
Add \frac{100}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{403}{12}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{403}{12}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{1209}}{6} x+\frac{1}{2}=-\frac{\sqrt{1209}}{6}
Simplify.
x=\frac{\sqrt{1209}}{6}-\frac{1}{2} x=-\frac{\sqrt{1209}}{6}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}