Solve for a
a=\frac{x+1}{x+2}
x\neq -2
Solve for x
x=-\frac{1-2a}{1-a}
a\neq 1
Graph
Share
Copied to clipboard
x+1=a\left(x+2\right)
Multiply both sides of the equation by x+2.
x+1=ax+2a
Use the distributive property to multiply a by x+2.
ax+2a=x+1
Swap sides so that all variable terms are on the left hand side.
\left(x+2\right)a=x+1
Combine all terms containing a.
\frac{\left(x+2\right)a}{x+2}=\frac{x+1}{x+2}
Divide both sides by x+2.
a=\frac{x+1}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
x+1=a\left(x+2\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
x+1=ax+2a
Use the distributive property to multiply a by x+2.
x+1-ax=2a
Subtract ax from both sides.
x-ax=2a-1
Subtract 1 from both sides.
\left(1-a\right)x=2a-1
Combine all terms containing x.
\frac{\left(1-a\right)x}{1-a}=\frac{2a-1}{1-a}
Divide both sides by 1-a.
x=\frac{2a-1}{1-a}
Dividing by 1-a undoes the multiplication by 1-a.
x=\frac{2a-1}{1-a}\text{, }x\neq -2
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}