Solve for x
x = \frac{\sqrt{2281} - 24}{5} \approx 4.751963149
x=\frac{-\sqrt{2281}-24}{5}\approx -14.351963149
Graph
Share
Copied to clipboard
15\left(x+1\right)\times \frac{x-1}{6}+24\left(x+3\right)=240
Multiply both sides of the equation by 120, the least common multiple of 8,6,5.
\frac{15\left(x-1\right)}{6}\left(x+1\right)+24\left(x+3\right)=240
Express 15\times \frac{x-1}{6} as a single fraction.
\frac{15\left(x-1\right)}{6}x+\frac{15\left(x-1\right)}{6}+24\left(x+3\right)=240
Use the distributive property to multiply \frac{15\left(x-1\right)}{6} by x+1.
\frac{15x-15}{6}x+\frac{15\left(x-1\right)}{6}+24\left(x+3\right)=240
Use the distributive property to multiply 15 by x-1.
\frac{\left(15x-15\right)x}{6}+\frac{15\left(x-1\right)}{6}+24\left(x+3\right)=240
Express \frac{15x-15}{6}x as a single fraction.
\frac{\left(15x-15\right)x}{6}+\frac{15x-15}{6}+24\left(x+3\right)=240
Use the distributive property to multiply 15 by x-1.
\frac{\left(15x-15\right)x+15x-15}{6}+24\left(x+3\right)=240
Since \frac{\left(15x-15\right)x}{6} and \frac{15x-15}{6} have the same denominator, add them by adding their numerators.
\frac{15x^{2}-15x+15x-15}{6}+24\left(x+3\right)=240
Do the multiplications in \left(15x-15\right)x+15x-15.
\frac{15x^{2}-15}{6}+24\left(x+3\right)=240
Combine like terms in 15x^{2}-15x+15x-15.
\frac{15x^{2}-15}{6}+24x+72=240
Use the distributive property to multiply 24 by x+3.
\frac{5}{2}x^{2}-\frac{5}{2}+24x+72=240
Divide each term of 15x^{2}-15 by 6 to get \frac{5}{2}x^{2}-\frac{5}{2}.
\frac{5}{2}x^{2}-\frac{5}{2}+24x+\frac{144}{2}=240
Convert 72 to fraction \frac{144}{2}.
\frac{5}{2}x^{2}+\frac{-5+144}{2}+24x=240
Since -\frac{5}{2} and \frac{144}{2} have the same denominator, add them by adding their numerators.
\frac{5}{2}x^{2}+\frac{139}{2}+24x=240
Add -5 and 144 to get 139.
\frac{5}{2}x^{2}+\frac{139}{2}+24x-240=0
Subtract 240 from both sides.
\frac{5}{2}x^{2}+\frac{139}{2}+24x-\frac{480}{2}=0
Convert 240 to fraction \frac{480}{2}.
\frac{5}{2}x^{2}+\frac{139-480}{2}+24x=0
Since \frac{139}{2} and \frac{480}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2}x^{2}-\frac{341}{2}+24x=0
Subtract 480 from 139 to get -341.
\frac{5}{2}x^{2}+24x-\frac{341}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\times \frac{5}{2}\left(-\frac{341}{2}\right)}}{2\times \frac{5}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{2} for a, 24 for b, and -\frac{341}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times \frac{5}{2}\left(-\frac{341}{2}\right)}}{2\times \frac{5}{2}}
Square 24.
x=\frac{-24±\sqrt{576-10\left(-\frac{341}{2}\right)}}{2\times \frac{5}{2}}
Multiply -4 times \frac{5}{2}.
x=\frac{-24±\sqrt{576+1705}}{2\times \frac{5}{2}}
Multiply -10 times -\frac{341}{2}.
x=\frac{-24±\sqrt{2281}}{2\times \frac{5}{2}}
Add 576 to 1705.
x=\frac{-24±\sqrt{2281}}{5}
Multiply 2 times \frac{5}{2}.
x=\frac{\sqrt{2281}-24}{5}
Now solve the equation x=\frac{-24±\sqrt{2281}}{5} when ± is plus. Add -24 to \sqrt{2281}.
x=\frac{-\sqrt{2281}-24}{5}
Now solve the equation x=\frac{-24±\sqrt{2281}}{5} when ± is minus. Subtract \sqrt{2281} from -24.
x=\frac{\sqrt{2281}-24}{5} x=\frac{-\sqrt{2281}-24}{5}
The equation is now solved.
15\left(x+1\right)\times \frac{x-1}{6}+24\left(x+3\right)=240
Multiply both sides of the equation by 120, the least common multiple of 8,6,5.
\frac{15\left(x-1\right)}{6}\left(x+1\right)+24\left(x+3\right)=240
Express 15\times \frac{x-1}{6} as a single fraction.
\frac{15\left(x-1\right)}{6}x+\frac{15\left(x-1\right)}{6}+24\left(x+3\right)=240
Use the distributive property to multiply \frac{15\left(x-1\right)}{6} by x+1.
\frac{15x-15}{6}x+\frac{15\left(x-1\right)}{6}+24\left(x+3\right)=240
Use the distributive property to multiply 15 by x-1.
\frac{\left(15x-15\right)x}{6}+\frac{15\left(x-1\right)}{6}+24\left(x+3\right)=240
Express \frac{15x-15}{6}x as a single fraction.
\frac{\left(15x-15\right)x}{6}+\frac{15x-15}{6}+24\left(x+3\right)=240
Use the distributive property to multiply 15 by x-1.
\frac{\left(15x-15\right)x+15x-15}{6}+24\left(x+3\right)=240
Since \frac{\left(15x-15\right)x}{6} and \frac{15x-15}{6} have the same denominator, add them by adding their numerators.
\frac{15x^{2}-15x+15x-15}{6}+24\left(x+3\right)=240
Do the multiplications in \left(15x-15\right)x+15x-15.
\frac{15x^{2}-15}{6}+24\left(x+3\right)=240
Combine like terms in 15x^{2}-15x+15x-15.
\frac{15x^{2}-15}{6}+24x+72=240
Use the distributive property to multiply 24 by x+3.
\frac{5}{2}x^{2}-\frac{5}{2}+24x+72=240
Divide each term of 15x^{2}-15 by 6 to get \frac{5}{2}x^{2}-\frac{5}{2}.
\frac{5}{2}x^{2}-\frac{5}{2}+24x+\frac{144}{2}=240
Convert 72 to fraction \frac{144}{2}.
\frac{5}{2}x^{2}+\frac{-5+144}{2}+24x=240
Since -\frac{5}{2} and \frac{144}{2} have the same denominator, add them by adding their numerators.
\frac{5}{2}x^{2}+\frac{139}{2}+24x=240
Add -5 and 144 to get 139.
\frac{5}{2}x^{2}+24x=240-\frac{139}{2}
Subtract \frac{139}{2} from both sides.
\frac{5}{2}x^{2}+24x=\frac{480}{2}-\frac{139}{2}
Convert 240 to fraction \frac{480}{2}.
\frac{5}{2}x^{2}+24x=\frac{480-139}{2}
Since \frac{480}{2} and \frac{139}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2}x^{2}+24x=\frac{341}{2}
Subtract 139 from 480 to get 341.
\frac{\frac{5}{2}x^{2}+24x}{\frac{5}{2}}=\frac{\frac{341}{2}}{\frac{5}{2}}
Divide both sides of the equation by \frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{24}{\frac{5}{2}}x=\frac{\frac{341}{2}}{\frac{5}{2}}
Dividing by \frac{5}{2} undoes the multiplication by \frac{5}{2}.
x^{2}+\frac{48}{5}x=\frac{\frac{341}{2}}{\frac{5}{2}}
Divide 24 by \frac{5}{2} by multiplying 24 by the reciprocal of \frac{5}{2}.
x^{2}+\frac{48}{5}x=\frac{341}{5}
Divide \frac{341}{2} by \frac{5}{2} by multiplying \frac{341}{2} by the reciprocal of \frac{5}{2}.
x^{2}+\frac{48}{5}x+\left(\frac{24}{5}\right)^{2}=\frac{341}{5}+\left(\frac{24}{5}\right)^{2}
Divide \frac{48}{5}, the coefficient of the x term, by 2 to get \frac{24}{5}. Then add the square of \frac{24}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{48}{5}x+\frac{576}{25}=\frac{341}{5}+\frac{576}{25}
Square \frac{24}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{48}{5}x+\frac{576}{25}=\frac{2281}{25}
Add \frac{341}{5} to \frac{576}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{24}{5}\right)^{2}=\frac{2281}{25}
Factor x^{2}+\frac{48}{5}x+\frac{576}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{24}{5}\right)^{2}}=\sqrt{\frac{2281}{25}}
Take the square root of both sides of the equation.
x+\frac{24}{5}=\frac{\sqrt{2281}}{5} x+\frac{24}{5}=-\frac{\sqrt{2281}}{5}
Simplify.
x=\frac{\sqrt{2281}-24}{5} x=\frac{-\sqrt{2281}-24}{5}
Subtract \frac{24}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}