Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Factor 4x-4. Factor x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(x-1\right) and \left(x-3\right)\left(x-1\right) is 4\left(x-3\right)\left(x-1\right). Multiply \frac{x+1}{4\left(x-1\right)} times \frac{x-3}{x-3}. Multiply \frac{x+1}{\left(x-3\right)\left(x-1\right)} times \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Since \frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} and \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Do the multiplications in \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Combine like terms in x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Factor 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(x-3\right)\left(x-1\right) and 4\left(x-1\right) is 4\left(x-3\right)\left(x-1\right). Multiply \frac{x-3}{4\left(x-1\right)} times \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Since \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} and \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Do the multiplications in x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Combine like terms in x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Cancel out 4\left(x-1\right) in both numerator and denominator.
\frac{x+1}{4\left(x-1\right)}+\frac{x+1}{\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Factor 4x-4. Factor x^{2}-4x+3.
\frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}+\frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(x-1\right) and \left(x-3\right)\left(x-1\right) is 4\left(x-3\right)\left(x-1\right). Multiply \frac{x+1}{4\left(x-1\right)} times \frac{x-3}{x-3}. Multiply \frac{x+1}{\left(x-3\right)\left(x-1\right)} times \frac{4}{4}.
\frac{\left(x+1\right)\left(x-3\right)+4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Since \frac{\left(x+1\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} and \frac{4\left(x+1\right)}{4\left(x-3\right)\left(x-1\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-3x+x-3+4x+4}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Do the multiplications in \left(x+1\right)\left(x-3\right)+4\left(x+1\right).
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4x-4}
Combine like terms in x^{2}-3x+x-3+4x+4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{x-3}{4\left(x-1\right)}
Factor 4x-4.
\frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)}-\frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(x-3\right)\left(x-1\right) and 4\left(x-1\right) is 4\left(x-3\right)\left(x-1\right). Multiply \frac{x-3}{4\left(x-1\right)} times \frac{x-3}{x-3}.
\frac{x^{2}+2x+1-\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)}
Since \frac{x^{2}+2x+1}{4\left(x-3\right)\left(x-1\right)} and \frac{\left(x-3\right)\left(x-3\right)}{4\left(x-3\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-x^{2}+3x+3x-9}{4\left(x-3\right)\left(x-1\right)}
Do the multiplications in x^{2}+2x+1-\left(x-3\right)\left(x-3\right).
\frac{8x-8}{4\left(x-3\right)\left(x-1\right)}
Combine like terms in x^{2}+2x+1-x^{2}+3x+3x-9.
\frac{8\left(x-1\right)}{4\left(x-3\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{8x-8}{4\left(x-3\right)\left(x-1\right)}.
\frac{2}{x-3}
Cancel out 4\left(x-1\right) in both numerator and denominator.