Solve for x
x=\sqrt{13}+3\approx 6.605551275
x=3-\sqrt{13}\approx -0.605551275
Graph
Share
Copied to clipboard
2x\left(x+1\right)=\left(3x+2\right)\left(x-2\right)
Variable x cannot be equal to any of the values -\frac{2}{3},0 since division by zero is not defined. Multiply both sides of the equation by 2x\left(3x+2\right), the least common multiple of 3x+2,2x.
2x^{2}+2x=\left(3x+2\right)\left(x-2\right)
Use the distributive property to multiply 2x by x+1.
2x^{2}+2x=3x^{2}-4x-4
Use the distributive property to multiply 3x+2 by x-2 and combine like terms.
2x^{2}+2x-3x^{2}=-4x-4
Subtract 3x^{2} from both sides.
-x^{2}+2x=-4x-4
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+2x+4x=-4
Add 4x to both sides.
-x^{2}+6x=-4
Combine 2x and 4x to get 6x.
-x^{2}+6x+4=0
Add 4 to both sides.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{36+16}}{2\left(-1\right)}
Multiply 4 times 4.
x=\frac{-6±\sqrt{52}}{2\left(-1\right)}
Add 36 to 16.
x=\frac{-6±2\sqrt{13}}{2\left(-1\right)}
Take the square root of 52.
x=\frac{-6±2\sqrt{13}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{13}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{13}}{-2} when ± is plus. Add -6 to 2\sqrt{13}.
x=3-\sqrt{13}
Divide -6+2\sqrt{13} by -2.
x=\frac{-2\sqrt{13}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{13}}{-2} when ± is minus. Subtract 2\sqrt{13} from -6.
x=\sqrt{13}+3
Divide -6-2\sqrt{13} by -2.
x=3-\sqrt{13} x=\sqrt{13}+3
The equation is now solved.
2x\left(x+1\right)=\left(3x+2\right)\left(x-2\right)
Variable x cannot be equal to any of the values -\frac{2}{3},0 since division by zero is not defined. Multiply both sides of the equation by 2x\left(3x+2\right), the least common multiple of 3x+2,2x.
2x^{2}+2x=\left(3x+2\right)\left(x-2\right)
Use the distributive property to multiply 2x by x+1.
2x^{2}+2x=3x^{2}-4x-4
Use the distributive property to multiply 3x+2 by x-2 and combine like terms.
2x^{2}+2x-3x^{2}=-4x-4
Subtract 3x^{2} from both sides.
-x^{2}+2x=-4x-4
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+2x+4x=-4
Add 4x to both sides.
-x^{2}+6x=-4
Combine 2x and 4x to get 6x.
\frac{-x^{2}+6x}{-1}=-\frac{4}{-1}
Divide both sides by -1.
x^{2}+\frac{6}{-1}x=-\frac{4}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-6x=-\frac{4}{-1}
Divide 6 by -1.
x^{2}-6x=4
Divide -4 by -1.
x^{2}-6x+\left(-3\right)^{2}=4+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=4+9
Square -3.
x^{2}-6x+9=13
Add 4 to 9.
\left(x-3\right)^{2}=13
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x-3=\sqrt{13} x-3=-\sqrt{13}
Simplify.
x=\sqrt{13}+3 x=3-\sqrt{13}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}