Solve for x
x=\sqrt{5}-2\approx 0.236067977
x=-\left(\sqrt{5}+2\right)\approx -4.236067977
Graph
Share
Copied to clipboard
4\left(x+1\right)+6x-9=2x-3-2xx
Multiply both sides of the equation by 12, the least common multiple of 3,2,4,12,6.
4\left(x+1\right)+6x-9=2x-3-2x^{2}
Multiply x and x to get x^{2}.
4x+4+6x-9=2x-3-2x^{2}
Use the distributive property to multiply 4 by x+1.
10x+4-9=2x-3-2x^{2}
Combine 4x and 6x to get 10x.
10x-5=2x-3-2x^{2}
Subtract 9 from 4 to get -5.
10x-5-2x=-3-2x^{2}
Subtract 2x from both sides.
8x-5=-3-2x^{2}
Combine 10x and -2x to get 8x.
8x-5-\left(-3\right)=-2x^{2}
Subtract -3 from both sides.
8x-5+3=-2x^{2}
The opposite of -3 is 3.
8x-5+3+2x^{2}=0
Add 2x^{2} to both sides.
8x-2+2x^{2}=0
Add -5 and 3 to get -2.
2x^{2}+8x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\left(-2\right)}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-8±\sqrt{80}}{2\times 2}
Add 64 to 16.
x=\frac{-8±4\sqrt{5}}{2\times 2}
Take the square root of 80.
x=\frac{-8±4\sqrt{5}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{5}-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{5}}{4} when ± is plus. Add -8 to 4\sqrt{5}.
x=\sqrt{5}-2
Divide -8+4\sqrt{5} by 4.
x=\frac{-4\sqrt{5}-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{5}}{4} when ± is minus. Subtract 4\sqrt{5} from -8.
x=-\sqrt{5}-2
Divide -8-4\sqrt{5} by 4.
x=\sqrt{5}-2 x=-\sqrt{5}-2
The equation is now solved.
4\left(x+1\right)+6x-9=2x-3-2xx
Multiply both sides of the equation by 12, the least common multiple of 3,2,4,12,6.
4\left(x+1\right)+6x-9=2x-3-2x^{2}
Multiply x and x to get x^{2}.
4x+4+6x-9=2x-3-2x^{2}
Use the distributive property to multiply 4 by x+1.
10x+4-9=2x-3-2x^{2}
Combine 4x and 6x to get 10x.
10x-5=2x-3-2x^{2}
Subtract 9 from 4 to get -5.
10x-5-2x=-3-2x^{2}
Subtract 2x from both sides.
8x-5=-3-2x^{2}
Combine 10x and -2x to get 8x.
8x-5+2x^{2}=-3
Add 2x^{2} to both sides.
8x+2x^{2}=-3+5
Add 5 to both sides.
8x+2x^{2}=2
Add -3 and 5 to get 2.
2x^{2}+8x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+8x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}+\frac{8}{2}x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4x=\frac{2}{2}
Divide 8 by 2.
x^{2}+4x=1
Divide 2 by 2.
x^{2}+4x+2^{2}=1+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=1+4
Square 2.
x^{2}+4x+4=5
Add 1 to 4.
\left(x+2\right)^{2}=5
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x+2=\sqrt{5} x+2=-\sqrt{5}
Simplify.
x=\sqrt{5}-2 x=-\sqrt{5}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}