Solve for x
x = -\frac{31}{12} = -2\frac{7}{12} \approx -2.583333333
Graph
Share
Copied to clipboard
3\left(x+1\right)-2\left(x-1\right)+6=3\left(\frac{1}{3}x-\frac{3}{2}\right)-6x
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x+3-2\left(x-1\right)+6=3\left(\frac{1}{3}x-\frac{3}{2}\right)-6x
Use the distributive property to multiply 3 by x+1.
3x+3-2x+2+6=3\left(\frac{1}{3}x-\frac{3}{2}\right)-6x
Use the distributive property to multiply -2 by x-1.
x+3+2+6=3\left(\frac{1}{3}x-\frac{3}{2}\right)-6x
Combine 3x and -2x to get x.
x+5+6=3\left(\frac{1}{3}x-\frac{3}{2}\right)-6x
Add 3 and 2 to get 5.
x+11=3\left(\frac{1}{3}x-\frac{3}{2}\right)-6x
Add 5 and 6 to get 11.
x+11=3\times \frac{1}{3}x+3\left(-\frac{3}{2}\right)-6x
Use the distributive property to multiply 3 by \frac{1}{3}x-\frac{3}{2}.
x+11=x+3\left(-\frac{3}{2}\right)-6x
Cancel out 3 and 3.
x+11=x+\frac{3\left(-3\right)}{2}-6x
Express 3\left(-\frac{3}{2}\right) as a single fraction.
x+11=x+\frac{-9}{2}-6x
Multiply 3 and -3 to get -9.
x+11=x-\frac{9}{2}-6x
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
x+11=-5x-\frac{9}{2}
Combine x and -6x to get -5x.
x+11+5x=-\frac{9}{2}
Add 5x to both sides.
6x+11=-\frac{9}{2}
Combine x and 5x to get 6x.
6x=-\frac{9}{2}-11
Subtract 11 from both sides.
6x=-\frac{9}{2}-\frac{22}{2}
Convert 11 to fraction \frac{22}{2}.
6x=\frac{-9-22}{2}
Since -\frac{9}{2} and \frac{22}{2} have the same denominator, subtract them by subtracting their numerators.
6x=-\frac{31}{2}
Subtract 22 from -9 to get -31.
x=\frac{-\frac{31}{2}}{6}
Divide both sides by 6.
x=\frac{-31}{2\times 6}
Express \frac{-\frac{31}{2}}{6} as a single fraction.
x=\frac{-31}{12}
Multiply 2 and 6 to get 12.
x=-\frac{31}{12}
Fraction \frac{-31}{12} can be rewritten as -\frac{31}{12} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}