Solve for x, y
x=13
y=7
Graph
Share
Copied to clipboard
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=9,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=9
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=9
Multiply \frac{1}{2} times x+1.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=9
Multiply \frac{1}{3} times y-1.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=9
Add \frac{1}{2} to -\frac{1}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{2}x+\frac{1}{3}y=\frac{53}{6}
Subtract \frac{1}{6} from both sides of the equation.
\frac{1}{2}x=-\frac{1}{3}y+\frac{53}{6}
Subtract \frac{y}{3} from both sides of the equation.
x=2\left(-\frac{1}{3}y+\frac{53}{6}\right)
Multiply both sides by 2.
x=-\frac{2}{3}y+\frac{53}{3}
Multiply 2 times -\frac{y}{3}+\frac{53}{6}.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{53}{3}-1\right)+\frac{1}{2}\left(y+1\right)=8
Substitute \frac{-2y+53}{3} for x in the other equation, \frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=8.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{50}{3}\right)+\frac{1}{2}\left(y+1\right)=8
Add \frac{53}{3} to -1.
-\frac{2}{9}y+\frac{50}{9}+\frac{1}{2}\left(y+1\right)=8
Multiply \frac{1}{3} times \frac{-2y+50}{3}.
-\frac{2}{9}y+\frac{50}{9}+\frac{1}{2}y+\frac{1}{2}=8
Multiply \frac{1}{2} times y+1.
\frac{5}{18}y+\frac{50}{9}+\frac{1}{2}=8
Add -\frac{2y}{9} to \frac{y}{2}.
\frac{5}{18}y+\frac{109}{18}=8
Add \frac{50}{9} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{5}{18}y=\frac{35}{18}
Subtract \frac{109}{18} from both sides of the equation.
y=7
Divide both sides of the equation by \frac{5}{18}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times 7+\frac{53}{3}
Substitute 7 for y in x=-\frac{2}{3}y+\frac{53}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-14+53}{3}
Multiply -\frac{2}{3} times 7.
x=13
Add \frac{53}{3} to -\frac{14}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=13,y=7
The system is now solved.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=9,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=8
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=9
Simplify the first equation to put it in standard form.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=9
Multiply \frac{1}{2} times x+1.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=9
Multiply \frac{1}{3} times y-1.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=9
Add \frac{1}{2} to -\frac{1}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{2}x+\frac{1}{3}y=\frac{53}{6}
Subtract \frac{1}{6} from both sides of the equation.
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=8
Simplify the second equation to put it in standard form.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}\left(y+1\right)=8
Multiply \frac{1}{3} times x-1.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}y+\frac{1}{2}=8
Multiply \frac{1}{2} times y+1.
\frac{1}{3}x+\frac{1}{2}y+\frac{1}{6}=8
Add -\frac{1}{3} to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{3}x+\frac{1}{2}y=\frac{47}{6}
Subtract \frac{1}{6} from both sides of the equation.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{53}{6}\\\frac{47}{6}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{53}{6}\\\frac{47}{6}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{53}{6}\\\frac{47}{6}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{53}{6}\\\frac{47}{6}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\\-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}\frac{53}{6}\\\frac{47}{6}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}&-\frac{12}{5}\\-\frac{12}{5}&\frac{18}{5}\end{matrix}\right)\left(\begin{matrix}\frac{53}{6}\\\frac{47}{6}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}\times \frac{53}{6}-\frac{12}{5}\times \frac{47}{6}\\-\frac{12}{5}\times \frac{53}{6}+\frac{18}{5}\times \frac{47}{6}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\7\end{matrix}\right)
Do the arithmetic.
x=13,y=7
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}