Evaluate
-\frac{x+1}{1-2x}
Expand
\frac{x+1}{2x-1}
Graph
Share
Copied to clipboard
\frac{\left(x+1\right)\left(4x-3\right)}{\left(4x-3\right)\left(-2x+1\right)}-\frac{\left(x+3\right)\left(-2x+1\right)}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-2x and 4x-3 is \left(4x-3\right)\left(-2x+1\right). Multiply \frac{x+1}{1-2x} times \frac{4x-3}{4x-3}. Multiply \frac{x+3}{4x-3} times \frac{-2x+1}{-2x+1}.
\frac{\left(x+1\right)\left(4x-3\right)-\left(x+3\right)\left(-2x+1\right)}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
Since \frac{\left(x+1\right)\left(4x-3\right)}{\left(4x-3\right)\left(-2x+1\right)} and \frac{\left(x+3\right)\left(-2x+1\right)}{\left(4x-3\right)\left(-2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-3x+4x-3+2x^{2}-x+6x-3}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
Do the multiplications in \left(x+1\right)\left(4x-3\right)-\left(x+3\right)\left(-2x+1\right).
\frac{6x^{2}+6x-6}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
Combine like terms in 4x^{2}-3x+4x-3+2x^{2}-x+6x-3.
\frac{6x^{2}+6x-6}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
Factor 8x^{2}-10x+3.
\frac{-\left(6x^{2}+6x-6\right)}{\left(2x-1\right)\left(4x-3\right)}+\frac{10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4x-3\right)\left(-2x+1\right) and \left(2x-1\right)\left(4x-3\right) is \left(2x-1\right)\left(4x-3\right). Multiply \frac{6x^{2}+6x-6}{\left(4x-3\right)\left(-2x+1\right)} times \frac{-1}{-1}.
\frac{-\left(6x^{2}+6x-6\right)+10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
Since \frac{-\left(6x^{2}+6x-6\right)}{\left(2x-1\right)\left(4x-3\right)} and \frac{10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)} have the same denominator, add them by adding their numerators.
\frac{-6x^{2}-6x+6+10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
Do the multiplications in -\left(6x^{2}+6x-6\right)+10x^{2}+7x-9.
\frac{4x^{2}+x-3}{\left(2x-1\right)\left(4x-3\right)}
Combine like terms in -6x^{2}-6x+6+10x^{2}+7x-9.
\frac{\left(4x-3\right)\left(x+1\right)}{\left(2x-1\right)\left(4x-3\right)}
Factor the expressions that are not already factored in \frac{4x^{2}+x-3}{\left(2x-1\right)\left(4x-3\right)}.
\frac{x+1}{2x-1}
Cancel out 4x-3 in both numerator and denominator.
\frac{\left(x+1\right)\left(4x-3\right)}{\left(4x-3\right)\left(-2x+1\right)}-\frac{\left(x+3\right)\left(-2x+1\right)}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-2x and 4x-3 is \left(4x-3\right)\left(-2x+1\right). Multiply \frac{x+1}{1-2x} times \frac{4x-3}{4x-3}. Multiply \frac{x+3}{4x-3} times \frac{-2x+1}{-2x+1}.
\frac{\left(x+1\right)\left(4x-3\right)-\left(x+3\right)\left(-2x+1\right)}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
Since \frac{\left(x+1\right)\left(4x-3\right)}{\left(4x-3\right)\left(-2x+1\right)} and \frac{\left(x+3\right)\left(-2x+1\right)}{\left(4x-3\right)\left(-2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}-3x+4x-3+2x^{2}-x+6x-3}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
Do the multiplications in \left(x+1\right)\left(4x-3\right)-\left(x+3\right)\left(-2x+1\right).
\frac{6x^{2}+6x-6}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{8x^{2}-10x+3}
Combine like terms in 4x^{2}-3x+4x-3+2x^{2}-x+6x-3.
\frac{6x^{2}+6x-6}{\left(4x-3\right)\left(-2x+1\right)}+\frac{10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
Factor 8x^{2}-10x+3.
\frac{-\left(6x^{2}+6x-6\right)}{\left(2x-1\right)\left(4x-3\right)}+\frac{10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(4x-3\right)\left(-2x+1\right) and \left(2x-1\right)\left(4x-3\right) is \left(2x-1\right)\left(4x-3\right). Multiply \frac{6x^{2}+6x-6}{\left(4x-3\right)\left(-2x+1\right)} times \frac{-1}{-1}.
\frac{-\left(6x^{2}+6x-6\right)+10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
Since \frac{-\left(6x^{2}+6x-6\right)}{\left(2x-1\right)\left(4x-3\right)} and \frac{10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)} have the same denominator, add them by adding their numerators.
\frac{-6x^{2}-6x+6+10x^{2}+7x-9}{\left(2x-1\right)\left(4x-3\right)}
Do the multiplications in -\left(6x^{2}+6x-6\right)+10x^{2}+7x-9.
\frac{4x^{2}+x-3}{\left(2x-1\right)\left(4x-3\right)}
Combine like terms in -6x^{2}-6x+6+10x^{2}+7x-9.
\frac{\left(4x-3\right)\left(x+1\right)}{\left(2x-1\right)\left(4x-3\right)}
Factor the expressions that are not already factored in \frac{4x^{2}+x-3}{\left(2x-1\right)\left(4x-3\right)}.
\frac{x+1}{2x-1}
Cancel out 4x-3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}