\frac { x + 0,5 y } { x - 5 } + 7 = 0
Solve for x
x=-\frac{y}{16}+4,375
y\neq -10
Solve for y
y=70-16x
x\neq 5
Graph
Share
Copied to clipboard
x+0,5y+\left(x-5\right)\times 7=0
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by x-5.
x+0,5y+7x-35=0
Use the distributive property to multiply x-5 by 7.
8x+0,5y-35=0
Combine x and 7x to get 8x.
8x-35=-0,5y
Subtract 0,5y from both sides. Anything subtracted from zero gives its negation.
8x=-0,5y+35
Add 35 to both sides.
8x=-\frac{y}{2}+35
The equation is in standard form.
\frac{8x}{8}=\frac{-\frac{y}{2}+35}{8}
Divide both sides by 8.
x=\frac{-\frac{y}{2}+35}{8}
Dividing by 8 undoes the multiplication by 8.
x=-\frac{y}{16}+\frac{35}{8}
Divide -\frac{y}{2}+35 by 8.
x=-\frac{y}{16}+\frac{35}{8}\text{, }x\neq 5
Variable x cannot be equal to 5.
x+0,5y+\left(x-5\right)\times 7=0
Multiply both sides of the equation by x-5.
x+0,5y+7x-35=0
Use the distributive property to multiply x-5 by 7.
8x+0,5y-35=0
Combine x and 7x to get 8x.
0,5y-35=-8x
Subtract 8x from both sides. Anything subtracted from zero gives its negation.
0,5y=-8x+35
Add 35 to both sides.
0,5y=35-8x
The equation is in standard form.
\frac{0,5y}{0,5}=\frac{35-8x}{0,5}
Multiply both sides by 2.
y=\frac{35-8x}{0,5}
Dividing by 0,5 undoes the multiplication by 0,5.
y=70-16x
Divide -8x+35 by 0,5 by multiplying -8x+35 by the reciprocal of 0,5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}