Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x\left(x+4\right)}{x+4}+\frac{4}{x+4}}{x-\frac{4x+4}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+4}{x+4}.
\frac{\frac{x\left(x+4\right)+4}{x+4}}{x-\frac{4x+4}{x+4}}
Since \frac{x\left(x+4\right)}{x+4} and \frac{4}{x+4} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+4x+4}{x+4}}{x-\frac{4x+4}{x+4}}
Do the multiplications in x\left(x+4\right)+4.
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x\left(x+4\right)}{x+4}-\frac{4x+4}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+4}{x+4}.
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x\left(x+4\right)-\left(4x+4\right)}{x+4}}
Since \frac{x\left(x+4\right)}{x+4} and \frac{4x+4}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x^{2}+4x-4x-4}{x+4}}
Do the multiplications in x\left(x+4\right)-\left(4x+4\right).
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x^{2}-4}{x+4}}
Combine like terms in x^{2}+4x-4x-4.
\frac{\left(x^{2}+4x+4\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-4\right)}
Divide \frac{x^{2}+4x+4}{x+4} by \frac{x^{2}-4}{x+4} by multiplying \frac{x^{2}+4x+4}{x+4} by the reciprocal of \frac{x^{2}-4}{x+4}.
\frac{x^{2}+4x+4}{x^{2}-4}
Cancel out x+4 in both numerator and denominator.
\frac{\left(x+2\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x+2}{x-2}
Cancel out x+2 in both numerator and denominator.
\frac{\frac{x\left(x+4\right)}{x+4}+\frac{4}{x+4}}{x-\frac{4x+4}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+4}{x+4}.
\frac{\frac{x\left(x+4\right)+4}{x+4}}{x-\frac{4x+4}{x+4}}
Since \frac{x\left(x+4\right)}{x+4} and \frac{4}{x+4} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+4x+4}{x+4}}{x-\frac{4x+4}{x+4}}
Do the multiplications in x\left(x+4\right)+4.
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x\left(x+4\right)}{x+4}-\frac{4x+4}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+4}{x+4}.
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x\left(x+4\right)-\left(4x+4\right)}{x+4}}
Since \frac{x\left(x+4\right)}{x+4} and \frac{4x+4}{x+4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x^{2}+4x-4x-4}{x+4}}
Do the multiplications in x\left(x+4\right)-\left(4x+4\right).
\frac{\frac{x^{2}+4x+4}{x+4}}{\frac{x^{2}-4}{x+4}}
Combine like terms in x^{2}+4x-4x-4.
\frac{\left(x^{2}+4x+4\right)\left(x+4\right)}{\left(x+4\right)\left(x^{2}-4\right)}
Divide \frac{x^{2}+4x+4}{x+4} by \frac{x^{2}-4}{x+4} by multiplying \frac{x^{2}+4x+4}{x+4} by the reciprocal of \frac{x^{2}-4}{x+4}.
\frac{x^{2}+4x+4}{x^{2}-4}
Cancel out x+4 in both numerator and denominator.
\frac{\left(x+2\right)^{2}}{\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x+2}{x-2}
Cancel out x+2 in both numerator and denominator.