Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x\left(x-2\right)}{x-2}+\frac{2x}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-2}{x-2}.
\frac{\frac{x\left(x-2\right)+2x}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
Since \frac{x\left(x-2\right)}{x-2} and \frac{2x}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+2x}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
Do the multiplications in x\left(x-2\right)+2x.
\frac{\frac{x^{2}}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
Combine like terms in x^{2}-2x+2x.
\frac{\frac{x^{2}}{x-2}}{\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4}{\left(x+2\right)\left(x-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}.
\frac{\frac{x^{2}}{x-2}}{\frac{\left(x+2\right)\left(x-2\right)+4}{\left(x+2\right)\left(x-2\right)}}
Since \frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)} and \frac{4}{\left(x+2\right)\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}}{x-2}}{\frac{x^{2}-2x+2x-4+4}{\left(x+2\right)\left(x-2\right)}}
Do the multiplications in \left(x+2\right)\left(x-2\right)+4.
\frac{\frac{x^{2}}{x-2}}{\frac{x^{2}}{\left(x+2\right)\left(x-2\right)}}
Combine like terms in x^{2}-2x+2x-4+4.
\frac{x^{2}\left(x+2\right)\left(x-2\right)}{\left(x-2\right)x^{2}}
Divide \frac{x^{2}}{x-2} by \frac{x^{2}}{\left(x+2\right)\left(x-2\right)} by multiplying \frac{x^{2}}{x-2} by the reciprocal of \frac{x^{2}}{\left(x+2\right)\left(x-2\right)}.
x+2
Cancel out \left(x-2\right)x^{2} in both numerator and denominator.
\frac{\frac{x\left(x-2\right)}{x-2}+\frac{2x}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-2}{x-2}.
\frac{\frac{x\left(x-2\right)+2x}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
Since \frac{x\left(x-2\right)}{x-2} and \frac{2x}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+2x}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
Do the multiplications in x\left(x-2\right)+2x.
\frac{\frac{x^{2}}{x-2}}{1+\frac{4}{\left(x+2\right)\left(x-2\right)}}
Combine like terms in x^{2}-2x+2x.
\frac{\frac{x^{2}}{x-2}}{\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4}{\left(x+2\right)\left(x-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}.
\frac{\frac{x^{2}}{x-2}}{\frac{\left(x+2\right)\left(x-2\right)+4}{\left(x+2\right)\left(x-2\right)}}
Since \frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)} and \frac{4}{\left(x+2\right)\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}}{x-2}}{\frac{x^{2}-2x+2x-4+4}{\left(x+2\right)\left(x-2\right)}}
Do the multiplications in \left(x+2\right)\left(x-2\right)+4.
\frac{\frac{x^{2}}{x-2}}{\frac{x^{2}}{\left(x+2\right)\left(x-2\right)}}
Combine like terms in x^{2}-2x+2x-4+4.
\frac{x^{2}\left(x+2\right)\left(x-2\right)}{\left(x-2\right)x^{2}}
Divide \frac{x^{2}}{x-2} by \frac{x^{2}}{\left(x+2\right)\left(x-2\right)} by multiplying \frac{x^{2}}{x-2} by the reciprocal of \frac{x^{2}}{\left(x+2\right)\left(x-2\right)}.
x+2
Cancel out \left(x-2\right)x^{2} in both numerator and denominator.