Solve for x
x = \frac{\sqrt{5593} + 61}{32} \approx 4.243323825
x=\frac{61-\sqrt{5593}}{32}\approx -0.430823825
Graph
Share
Copied to clipboard
x+\frac{13}{4}=\frac{4}{3}\left(\frac{4}{3}x^{2}-\frac{13}{3}x\right)
Multiply both sides of the equation by 3.
x+\frac{13}{4}=\frac{16}{9}x^{2}-\frac{52}{9}x
Use the distributive property to multiply \frac{4}{3} by \frac{4}{3}x^{2}-\frac{13}{3}x.
x+\frac{13}{4}-\frac{16}{9}x^{2}=-\frac{52}{9}x
Subtract \frac{16}{9}x^{2} from both sides.
x+\frac{13}{4}-\frac{16}{9}x^{2}+\frac{52}{9}x=0
Add \frac{52}{9}x to both sides.
\frac{61}{9}x+\frac{13}{4}-\frac{16}{9}x^{2}=0
Combine x and \frac{52}{9}x to get \frac{61}{9}x.
-\frac{16}{9}x^{2}+\frac{61}{9}x+\frac{13}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{61}{9}±\sqrt{\left(\frac{61}{9}\right)^{2}-4\left(-\frac{16}{9}\right)\times \frac{13}{4}}}{2\left(-\frac{16}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{16}{9} for a, \frac{61}{9} for b, and \frac{13}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{61}{9}±\sqrt{\frac{3721}{81}-4\left(-\frac{16}{9}\right)\times \frac{13}{4}}}{2\left(-\frac{16}{9}\right)}
Square \frac{61}{9} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{61}{9}±\sqrt{\frac{3721}{81}+\frac{64}{9}\times \frac{13}{4}}}{2\left(-\frac{16}{9}\right)}
Multiply -4 times -\frac{16}{9}.
x=\frac{-\frac{61}{9}±\sqrt{\frac{3721}{81}+\frac{208}{9}}}{2\left(-\frac{16}{9}\right)}
Multiply \frac{64}{9} times \frac{13}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{61}{9}±\sqrt{\frac{5593}{81}}}{2\left(-\frac{16}{9}\right)}
Add \frac{3721}{81} to \frac{208}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{61}{9}±\frac{\sqrt{5593}}{9}}{2\left(-\frac{16}{9}\right)}
Take the square root of \frac{5593}{81}.
x=\frac{-\frac{61}{9}±\frac{\sqrt{5593}}{9}}{-\frac{32}{9}}
Multiply 2 times -\frac{16}{9}.
x=\frac{\sqrt{5593}-61}{-\frac{32}{9}\times 9}
Now solve the equation x=\frac{-\frac{61}{9}±\frac{\sqrt{5593}}{9}}{-\frac{32}{9}} when ± is plus. Add -\frac{61}{9} to \frac{\sqrt{5593}}{9}.
x=\frac{61-\sqrt{5593}}{32}
Divide \frac{-61+\sqrt{5593}}{9} by -\frac{32}{9} by multiplying \frac{-61+\sqrt{5593}}{9} by the reciprocal of -\frac{32}{9}.
x=\frac{-\sqrt{5593}-61}{-\frac{32}{9}\times 9}
Now solve the equation x=\frac{-\frac{61}{9}±\frac{\sqrt{5593}}{9}}{-\frac{32}{9}} when ± is minus. Subtract \frac{\sqrt{5593}}{9} from -\frac{61}{9}.
x=\frac{\sqrt{5593}+61}{32}
Divide \frac{-61-\sqrt{5593}}{9} by -\frac{32}{9} by multiplying \frac{-61-\sqrt{5593}}{9} by the reciprocal of -\frac{32}{9}.
x=\frac{61-\sqrt{5593}}{32} x=\frac{\sqrt{5593}+61}{32}
The equation is now solved.
x+\frac{13}{4}=\frac{4}{3}\left(\frac{4}{3}x^{2}-\frac{13}{3}x\right)
Multiply both sides of the equation by 3.
x+\frac{13}{4}=\frac{16}{9}x^{2}-\frac{52}{9}x
Use the distributive property to multiply \frac{4}{3} by \frac{4}{3}x^{2}-\frac{13}{3}x.
x+\frac{13}{4}-\frac{16}{9}x^{2}=-\frac{52}{9}x
Subtract \frac{16}{9}x^{2} from both sides.
x+\frac{13}{4}-\frac{16}{9}x^{2}+\frac{52}{9}x=0
Add \frac{52}{9}x to both sides.
\frac{61}{9}x+\frac{13}{4}-\frac{16}{9}x^{2}=0
Combine x and \frac{52}{9}x to get \frac{61}{9}x.
\frac{61}{9}x-\frac{16}{9}x^{2}=-\frac{13}{4}
Subtract \frac{13}{4} from both sides. Anything subtracted from zero gives its negation.
-\frac{16}{9}x^{2}+\frac{61}{9}x=-\frac{13}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{16}{9}x^{2}+\frac{61}{9}x}{-\frac{16}{9}}=-\frac{\frac{13}{4}}{-\frac{16}{9}}
Divide both sides of the equation by -\frac{16}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{61}{9}}{-\frac{16}{9}}x=-\frac{\frac{13}{4}}{-\frac{16}{9}}
Dividing by -\frac{16}{9} undoes the multiplication by -\frac{16}{9}.
x^{2}-\frac{61}{16}x=-\frac{\frac{13}{4}}{-\frac{16}{9}}
Divide \frac{61}{9} by -\frac{16}{9} by multiplying \frac{61}{9} by the reciprocal of -\frac{16}{9}.
x^{2}-\frac{61}{16}x=\frac{117}{64}
Divide -\frac{13}{4} by -\frac{16}{9} by multiplying -\frac{13}{4} by the reciprocal of -\frac{16}{9}.
x^{2}-\frac{61}{16}x+\left(-\frac{61}{32}\right)^{2}=\frac{117}{64}+\left(-\frac{61}{32}\right)^{2}
Divide -\frac{61}{16}, the coefficient of the x term, by 2 to get -\frac{61}{32}. Then add the square of -\frac{61}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{61}{16}x+\frac{3721}{1024}=\frac{117}{64}+\frac{3721}{1024}
Square -\frac{61}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{61}{16}x+\frac{3721}{1024}=\frac{5593}{1024}
Add \frac{117}{64} to \frac{3721}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{61}{32}\right)^{2}=\frac{5593}{1024}
Factor x^{2}-\frac{61}{16}x+\frac{3721}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{61}{32}\right)^{2}}=\sqrt{\frac{5593}{1024}}
Take the square root of both sides of the equation.
x-\frac{61}{32}=\frac{\sqrt{5593}}{32} x-\frac{61}{32}=-\frac{\sqrt{5593}}{32}
Simplify.
x=\frac{\sqrt{5593}+61}{32} x=\frac{61-\sqrt{5593}}{32}
Add \frac{61}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}