Evaluate
\frac{x}{4}
Expand
\frac{x}{4}
Graph
Share
Copied to clipboard
\frac{x+\frac{1}{2}}{\frac{4x}{x}+\frac{2}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x}{x}.
\frac{x+\frac{1}{2}}{\frac{4x+2}{x}}
Since \frac{4x}{x} and \frac{2}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x+\frac{1}{2}\right)x}{4x+2}
Divide x+\frac{1}{2} by \frac{4x+2}{x} by multiplying x+\frac{1}{2} by the reciprocal of \frac{4x+2}{x}.
\frac{\frac{1}{2}x\left(2x+1\right)}{2\left(2x+1\right)}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}x}{2}
Cancel out 2x+1 in both numerator and denominator.
\frac{1}{4}x
Divide \frac{1}{2}x by 2 to get \frac{1}{4}x.
\frac{x+\frac{1}{2}}{\frac{4x}{x}+\frac{2}{x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x}{x}.
\frac{x+\frac{1}{2}}{\frac{4x+2}{x}}
Since \frac{4x}{x} and \frac{2}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x+\frac{1}{2}\right)x}{4x+2}
Divide x+\frac{1}{2} by \frac{4x+2}{x} by multiplying x+\frac{1}{2} by the reciprocal of \frac{4x+2}{x}.
\frac{\frac{1}{2}x\left(2x+1\right)}{2\left(2x+1\right)}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}x}{2}
Cancel out 2x+1 in both numerator and denominator.
\frac{1}{4}x
Divide \frac{1}{2}x by 2 to get \frac{1}{4}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}