Solve for w (complex solution)
\left\{\begin{matrix}w=\frac{y\left(x+k\right)}{x}\text{, }&x\neq 0\text{ and }x\neq -k\\w\in \mathrm{C}\text{, }&y=0\text{ and }x=0\text{ and }k\neq 0\end{matrix}\right.
Solve for w
\left\{\begin{matrix}w=\frac{y\left(x+k\right)}{x}\text{, }&x\neq 0\text{ and }x\neq -k\\w\in \mathrm{R}\text{, }&y=0\text{ and }x=0\text{ and }k\neq 0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{x\left(w-y\right)}{y}\text{, }&x\neq 0\text{ and }w\neq 0\text{ and }y\neq 0\\k\neq -x\text{, }&x\neq 0\text{ and }y=0\text{ and }w=0\\k\neq 0\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
wx=y\left(x+k\right)
Multiply both sides of the equation by x+k.
wx=yx+yk
Use the distributive property to multiply y by x+k.
xw=xy+ky
The equation is in standard form.
\frac{xw}{x}=\frac{y\left(x+k\right)}{x}
Divide both sides by x.
w=\frac{y\left(x+k\right)}{x}
Dividing by x undoes the multiplication by x.
wx=y\left(x+k\right)
Multiply both sides of the equation by x+k.
wx=yx+yk
Use the distributive property to multiply y by x+k.
xw=xy+ky
The equation is in standard form.
\frac{xw}{x}=\frac{y\left(x+k\right)}{x}
Divide both sides by x.
w=\frac{y\left(x+k\right)}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}