Solve for w
w=-2
Share
Copied to clipboard
2\left(w-1\right)+24w\left(-\frac{5}{8}\right)=24
Variable w cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 24w, the least common multiple of 12w,8,w.
2w-2+24w\left(-\frac{5}{8}\right)=24
Use the distributive property to multiply 2 by w-1.
2w-2-15w=24
Multiply 24 and -\frac{5}{8} to get -15.
-13w-2=24
Combine 2w and -15w to get -13w.
-13w=24+2
Add 2 to both sides.
-13w=26
Add 24 and 2 to get 26.
w=\frac{26}{-13}
Divide both sides by -13.
w=-2
Divide 26 by -13 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}