Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. w
Tick mark Image

Similar Problems from Web Search

Share

\frac{w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}+6
Factor w^{2}-24w+2.
\frac{w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}+\frac{6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}.
\frac{w+6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
Since \frac{w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)} and \frac{6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)} have the same denominator, add them by adding their numerators.
\frac{w+6w^{2}+6w\sqrt{142}-72w-6\sqrt{142}w+12-72w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
Do the multiplications in w+6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right).
\frac{-143w+6w^{2}+12}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
Combine like terms in w+6w^{2}+6w\sqrt{142}-72w-6\sqrt{142}w+12-72w.
\frac{-143w+6w^{2}+12}{w^{2}-24w-\left(\sqrt{142}\right)^{2}+144}
Expand \left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right).
\frac{-143w+6w^{2}+12}{w^{2}-24w-142+144}
The square of \sqrt{142} is 142.
\frac{-143w+6w^{2}+12}{w^{2}-24w+2}
Add -142 and 144 to get 2.