Evaluate
\frac{6w^{2}-143w+12}{w^{2}-24w+2}
Differentiate w.r.t. w
\frac{2-w^{2}}{w^{4}-48w^{3}+580w^{2}-96w+4}
Share
Copied to clipboard
\frac{w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}+6
Factor w^{2}-24w+2.
\frac{w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}+\frac{6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}.
\frac{w+6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
Since \frac{w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)} and \frac{6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)} have the same denominator, add them by adding their numerators.
\frac{w+6w^{2}+6w\sqrt{142}-72w-6\sqrt{142}w+12-72w}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
Do the multiplications in w+6\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right).
\frac{-143w+6w^{2}+12}{\left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right)}
Combine like terms in w+6w^{2}+6w\sqrt{142}-72w-6\sqrt{142}w+12-72w.
\frac{-143w+6w^{2}+12}{w^{2}-24w-\left(\sqrt{142}\right)^{2}+144}
Expand \left(w-\left(\sqrt{142}+12\right)\right)\left(w-\left(-\sqrt{142}+12\right)\right).
\frac{-143w+6w^{2}+12}{w^{2}-24w-142+144}
The square of \sqrt{142} is 142.
\frac{-143w+6w^{2}+12}{w^{2}-24w+2}
Add -142 and 144 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}