Evaluate
\frac{w\left(z-1\right)}{w-y}
Expand
-\frac{wz-w}{y-w}
Share
Copied to clipboard
\frac{\frac{\left(-y+w\right)w^{2}}{w\left(z-1\right)}}{\left(\frac{w-y}{z-1}\right)^{2}}
Factor the expressions that are not already factored in \frac{w^{3}-w^{2}y}{wz-w}.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\left(\frac{w-y}{z-1}\right)^{2}}
Cancel out w in both numerator and denominator.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}}
To raise \frac{w-y}{z-1} to a power, raise both numerator and denominator to the power and then divide.
\frac{w\left(-y+w\right)\left(z-1\right)^{2}}{\left(z-1\right)\left(w-y\right)^{2}}
Divide \frac{w\left(-y+w\right)}{z-1} by \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}} by multiplying \frac{w\left(-y+w\right)}{z-1} by the reciprocal of \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}.
\frac{w\left(z-1\right)}{-y+w}
Cancel out \left(z-1\right)\left(-y+w\right) in both numerator and denominator.
\frac{wz-w}{-y+w}
Use the distributive property to multiply w by z-1.
\frac{\frac{\left(-y+w\right)w^{2}}{w\left(z-1\right)}}{\left(\frac{w-y}{z-1}\right)^{2}}
Factor the expressions that are not already factored in \frac{w^{3}-w^{2}y}{wz-w}.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\left(\frac{w-y}{z-1}\right)^{2}}
Cancel out w in both numerator and denominator.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}}
To raise \frac{w-y}{z-1} to a power, raise both numerator and denominator to the power and then divide.
\frac{w\left(-y+w\right)\left(z-1\right)^{2}}{\left(z-1\right)\left(w-y\right)^{2}}
Divide \frac{w\left(-y+w\right)}{z-1} by \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}} by multiplying \frac{w\left(-y+w\right)}{z-1} by the reciprocal of \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}.
\frac{w\left(z-1\right)}{-y+w}
Cancel out \left(z-1\right)\left(-y+w\right) in both numerator and denominator.
\frac{wz-w}{-y+w}
Use the distributive property to multiply w by z-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}