Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(-y+w\right)w^{2}}{w\left(z-1\right)}}{\left(\frac{w-y}{z-1}\right)^{2}}
Factor the expressions that are not already factored in \frac{w^{3}-w^{2}y}{wz-w}.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\left(\frac{w-y}{z-1}\right)^{2}}
Cancel out w in both numerator and denominator.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}}
To raise \frac{w-y}{z-1} to a power, raise both numerator and denominator to the power and then divide.
\frac{w\left(-y+w\right)\left(z-1\right)^{2}}{\left(z-1\right)\left(w-y\right)^{2}}
Divide \frac{w\left(-y+w\right)}{z-1} by \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}} by multiplying \frac{w\left(-y+w\right)}{z-1} by the reciprocal of \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}.
\frac{w\left(z-1\right)}{-y+w}
Cancel out \left(z-1\right)\left(-y+w\right) in both numerator and denominator.
\frac{wz-w}{-y+w}
Use the distributive property to multiply w by z-1.
\frac{\frac{\left(-y+w\right)w^{2}}{w\left(z-1\right)}}{\left(\frac{w-y}{z-1}\right)^{2}}
Factor the expressions that are not already factored in \frac{w^{3}-w^{2}y}{wz-w}.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\left(\frac{w-y}{z-1}\right)^{2}}
Cancel out w in both numerator and denominator.
\frac{\frac{w\left(-y+w\right)}{z-1}}{\frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}}
To raise \frac{w-y}{z-1} to a power, raise both numerator and denominator to the power and then divide.
\frac{w\left(-y+w\right)\left(z-1\right)^{2}}{\left(z-1\right)\left(w-y\right)^{2}}
Divide \frac{w\left(-y+w\right)}{z-1} by \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}} by multiplying \frac{w\left(-y+w\right)}{z-1} by the reciprocal of \frac{\left(w-y\right)^{2}}{\left(z-1\right)^{2}}.
\frac{w\left(z-1\right)}{-y+w}
Cancel out \left(z-1\right)\left(-y+w\right) in both numerator and denominator.
\frac{wz-w}{-y+w}
Use the distributive property to multiply w by z-1.