Evaluate
\frac{2w^{2}-15w-4}{\left(w-8\right)\left(w-6\right)}
Expand
\frac{2w^{2}-15w-4}{\left(w-8\right)\left(w-6\right)}
Share
Copied to clipboard
\frac{\left(w-8\right)\left(w+5\right)}{\left(w-8\right)\left(w-6\right)}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Factor the expressions that are not already factored in \frac{w^{2}-3w-40}{w^{2}-14w+48}.
\frac{w+5}{w-6}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Cancel out w-8 in both numerator and denominator.
\frac{w+5}{w-6}+\frac{\left(w-6\right)\left(w+5\right)}{\left(w-8\right)\left(w+5\right)}
Factor the expressions that are not already factored in \frac{w^{2}-w-30}{w^{2}-3w-40}.
\frac{w+5}{w-6}+\frac{w-6}{w-8}
Cancel out w+5 in both numerator and denominator.
\frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)}+\frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of w-6 and w-8 is \left(w-8\right)\left(w-6\right). Multiply \frac{w+5}{w-6} times \frac{w-8}{w-8}. Multiply \frac{w-6}{w-8} times \frac{w-6}{w-6}.
\frac{\left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
Since \frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)} and \frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)} have the same denominator, add them by adding their numerators.
\frac{w^{2}-8w+5w-40+w^{2}-6w-6w+36}{\left(w-8\right)\left(w-6\right)}
Do the multiplications in \left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right).
\frac{2w^{2}-15w-4}{\left(w-8\right)\left(w-6\right)}
Combine like terms in w^{2}-8w+5w-40+w^{2}-6w-6w+36.
\frac{2w^{2}-15w-4}{w^{2}-14w+48}
Expand \left(w-8\right)\left(w-6\right).
\frac{\left(w-8\right)\left(w+5\right)}{\left(w-8\right)\left(w-6\right)}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Factor the expressions that are not already factored in \frac{w^{2}-3w-40}{w^{2}-14w+48}.
\frac{w+5}{w-6}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Cancel out w-8 in both numerator and denominator.
\frac{w+5}{w-6}+\frac{\left(w-6\right)\left(w+5\right)}{\left(w-8\right)\left(w+5\right)}
Factor the expressions that are not already factored in \frac{w^{2}-w-30}{w^{2}-3w-40}.
\frac{w+5}{w-6}+\frac{w-6}{w-8}
Cancel out w+5 in both numerator and denominator.
\frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)}+\frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of w-6 and w-8 is \left(w-8\right)\left(w-6\right). Multiply \frac{w+5}{w-6} times \frac{w-8}{w-8}. Multiply \frac{w-6}{w-8} times \frac{w-6}{w-6}.
\frac{\left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
Since \frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)} and \frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)} have the same denominator, add them by adding their numerators.
\frac{w^{2}-8w+5w-40+w^{2}-6w-6w+36}{\left(w-8\right)\left(w-6\right)}
Do the multiplications in \left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right).
\frac{2w^{2}-15w-4}{\left(w-8\right)\left(w-6\right)}
Combine like terms in w^{2}-8w+5w-40+w^{2}-6w-6w+36.
\frac{2w^{2}-15w-4}{w^{2}-14w+48}
Expand \left(w-8\right)\left(w-6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}