Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(w-8\right)\left(w+5\right)}{\left(w-8\right)\left(w-6\right)}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Factor the expressions that are not already factored in \frac{w^{2}-3w-40}{w^{2}-14w+48}.
\frac{w+5}{w-6}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Cancel out w-8 in both numerator and denominator.
\frac{w+5}{w-6}+\frac{\left(w-6\right)\left(w+5\right)}{\left(w-8\right)\left(w+5\right)}
Factor the expressions that are not already factored in \frac{w^{2}-w-30}{w^{2}-3w-40}.
\frac{w+5}{w-6}+\frac{w-6}{w-8}
Cancel out w+5 in both numerator and denominator.
\frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)}+\frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of w-6 and w-8 is \left(w-8\right)\left(w-6\right). Multiply \frac{w+5}{w-6} times \frac{w-8}{w-8}. Multiply \frac{w-6}{w-8} times \frac{w-6}{w-6}.
\frac{\left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
Since \frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)} and \frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)} have the same denominator, add them by adding their numerators.
\frac{w^{2}-8w+5w-40+w^{2}-6w-6w+36}{\left(w-8\right)\left(w-6\right)}
Do the multiplications in \left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right).
\frac{2w^{2}-15w-4}{\left(w-8\right)\left(w-6\right)}
Combine like terms in w^{2}-8w+5w-40+w^{2}-6w-6w+36.
\frac{2w^{2}-15w-4}{w^{2}-14w+48}
Expand \left(w-8\right)\left(w-6\right).
\frac{\left(w-8\right)\left(w+5\right)}{\left(w-8\right)\left(w-6\right)}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Factor the expressions that are not already factored in \frac{w^{2}-3w-40}{w^{2}-14w+48}.
\frac{w+5}{w-6}+\frac{w^{2}-w-30}{w^{2}-3w-40}
Cancel out w-8 in both numerator and denominator.
\frac{w+5}{w-6}+\frac{\left(w-6\right)\left(w+5\right)}{\left(w-8\right)\left(w+5\right)}
Factor the expressions that are not already factored in \frac{w^{2}-w-30}{w^{2}-3w-40}.
\frac{w+5}{w-6}+\frac{w-6}{w-8}
Cancel out w+5 in both numerator and denominator.
\frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)}+\frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of w-6 and w-8 is \left(w-8\right)\left(w-6\right). Multiply \frac{w+5}{w-6} times \frac{w-8}{w-8}. Multiply \frac{w-6}{w-8} times \frac{w-6}{w-6}.
\frac{\left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)}
Since \frac{\left(w+5\right)\left(w-8\right)}{\left(w-8\right)\left(w-6\right)} and \frac{\left(w-6\right)\left(w-6\right)}{\left(w-8\right)\left(w-6\right)} have the same denominator, add them by adding their numerators.
\frac{w^{2}-8w+5w-40+w^{2}-6w-6w+36}{\left(w-8\right)\left(w-6\right)}
Do the multiplications in \left(w+5\right)\left(w-8\right)+\left(w-6\right)\left(w-6\right).
\frac{2w^{2}-15w-4}{\left(w-8\right)\left(w-6\right)}
Combine like terms in w^{2}-8w+5w-40+w^{2}-6w-6w+36.
\frac{2w^{2}-15w-4}{w^{2}-14w+48}
Expand \left(w-8\right)\left(w-6\right).