Solve for w
w=-9
Share
Copied to clipboard
\left(w+3\right)\left(w+7\right)=\left(w+6\right)\left(w+5\right)
Variable w cannot be equal to any of the values -6,-3 since division by zero is not defined. Multiply both sides of the equation by \left(w+3\right)\left(w+6\right), the least common multiple of w+6,w+3.
w^{2}+10w+21=\left(w+6\right)\left(w+5\right)
Use the distributive property to multiply w+3 by w+7 and combine like terms.
w^{2}+10w+21=w^{2}+11w+30
Use the distributive property to multiply w+6 by w+5 and combine like terms.
w^{2}+10w+21-w^{2}=11w+30
Subtract w^{2} from both sides.
10w+21=11w+30
Combine w^{2} and -w^{2} to get 0.
10w+21-11w=30
Subtract 11w from both sides.
-w+21=30
Combine 10w and -11w to get -w.
-w=30-21
Subtract 21 from both sides.
-w=9
Subtract 21 from 30 to get 9.
w=-9
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}