Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{w+5}{\left(w+5\right)^{2}}-\frac{w-8}{w^{2}-10w+25}
Factor the expressions that are not already factored in \frac{w+5}{w^{2}+10w+25}.
\frac{1}{w+5}-\frac{w-8}{w^{2}-10w+25}
Cancel out w+5 in both numerator and denominator.
\frac{1}{w+5}-\frac{w-8}{\left(w-5\right)^{2}}
Factor w^{2}-10w+25.
\frac{\left(w-5\right)^{2}}{\left(w+5\right)\left(w-5\right)^{2}}-\frac{\left(w-8\right)\left(w+5\right)}{\left(w+5\right)\left(w-5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of w+5 and \left(w-5\right)^{2} is \left(w+5\right)\left(w-5\right)^{2}. Multiply \frac{1}{w+5} times \frac{\left(w-5\right)^{2}}{\left(w-5\right)^{2}}. Multiply \frac{w-8}{\left(w-5\right)^{2}} times \frac{w+5}{w+5}.
\frac{\left(w-5\right)^{2}-\left(w-8\right)\left(w+5\right)}{\left(w+5\right)\left(w-5\right)^{2}}
Since \frac{\left(w-5\right)^{2}}{\left(w+5\right)\left(w-5\right)^{2}} and \frac{\left(w-8\right)\left(w+5\right)}{\left(w+5\right)\left(w-5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{w^{2}-10w+25-w^{2}-5w+8w+40}{\left(w+5\right)\left(w-5\right)^{2}}
Do the multiplications in \left(w-5\right)^{2}-\left(w-8\right)\left(w+5\right).
\frac{-7w+65}{\left(w+5\right)\left(w-5\right)^{2}}
Combine like terms in w^{2}-10w+25-w^{2}-5w+8w+40.
\frac{-7w+65}{w^{3}-5w^{2}-25w+125}
Expand \left(w+5\right)\left(w-5\right)^{2}.
\frac{w+5}{\left(w+5\right)^{2}}-\frac{w-8}{w^{2}-10w+25}
Factor the expressions that are not already factored in \frac{w+5}{w^{2}+10w+25}.
\frac{1}{w+5}-\frac{w-8}{w^{2}-10w+25}
Cancel out w+5 in both numerator and denominator.
\frac{1}{w+5}-\frac{w-8}{\left(w-5\right)^{2}}
Factor w^{2}-10w+25.
\frac{\left(w-5\right)^{2}}{\left(w+5\right)\left(w-5\right)^{2}}-\frac{\left(w-8\right)\left(w+5\right)}{\left(w+5\right)\left(w-5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of w+5 and \left(w-5\right)^{2} is \left(w+5\right)\left(w-5\right)^{2}. Multiply \frac{1}{w+5} times \frac{\left(w-5\right)^{2}}{\left(w-5\right)^{2}}. Multiply \frac{w-8}{\left(w-5\right)^{2}} times \frac{w+5}{w+5}.
\frac{\left(w-5\right)^{2}-\left(w-8\right)\left(w+5\right)}{\left(w+5\right)\left(w-5\right)^{2}}
Since \frac{\left(w-5\right)^{2}}{\left(w+5\right)\left(w-5\right)^{2}} and \frac{\left(w-8\right)\left(w+5\right)}{\left(w+5\right)\left(w-5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{w^{2}-10w+25-w^{2}-5w+8w+40}{\left(w+5\right)\left(w-5\right)^{2}}
Do the multiplications in \left(w-5\right)^{2}-\left(w-8\right)\left(w+5\right).
\frac{-7w+65}{\left(w+5\right)\left(w-5\right)^{2}}
Combine like terms in w^{2}-10w+25-w^{2}-5w+8w+40.
\frac{-7w+65}{w^{3}-5w^{2}-25w+125}
Expand \left(w+5\right)\left(w-5\right)^{2}.