Solve for w
w = \frac{57}{29} = 1\frac{28}{29} \approx 1.965517241
Share
Copied to clipboard
15\left(w+3\right)=20w+12\left(2w-1\right)
Multiply both sides of the equation by 60, the least common multiple of 4,3,5.
15w+45=20w+12\left(2w-1\right)
Use the distributive property to multiply 15 by w+3.
15w+45=20w+24w-12
Use the distributive property to multiply 12 by 2w-1.
15w+45=44w-12
Combine 20w and 24w to get 44w.
15w+45-44w=-12
Subtract 44w from both sides.
-29w+45=-12
Combine 15w and -44w to get -29w.
-29w=-12-45
Subtract 45 from both sides.
-29w=-57
Subtract 45 from -12 to get -57.
w=\frac{-57}{-29}
Divide both sides by -29.
w=\frac{57}{29}
Fraction \frac{-57}{-29} can be simplified to \frac{57}{29} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}