Solve for w
w = -\frac{30}{7} = -4\frac{2}{7} \approx -4.285714286
Share
Copied to clipboard
5\left(w+2\right)+40w\left(-\frac{3}{10}\right)=40
Variable w cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 40w, the least common multiple of 8w,10,w.
5w+10+40w\left(-\frac{3}{10}\right)=40
Use the distributive property to multiply 5 by w+2.
5w+10-12w=40
Multiply 40 and -\frac{3}{10} to get -12.
-7w+10=40
Combine 5w and -12w to get -7w.
-7w=40-10
Subtract 10 from both sides.
-7w=30
Subtract 10 from 40 to get 30.
w=\frac{30}{-7}
Divide both sides by -7.
w=-\frac{30}{7}
Fraction \frac{30}{-7} can be rewritten as -\frac{30}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}