Solve for k
k=-\frac{7m}{47\left(v_{0}-3\right)}
m\neq 0\text{ and }v_{0}\neq 3
Solve for m
m=-\frac{47k\left(v_{0}-3\right)}{7}
v_{0}\neq 3\text{ and }k\neq 0
Quiz
Linear Equation
5 problems similar to:
\frac { v _ { 0 } - 3 } { 1 m } + \frac { 7 } { 47 k } = 0
Share
Copied to clipboard
47k\left(v_{0}-3\right)+m\times 7=0
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 47km, the least common multiple of 1m,47k.
47kv_{0}-141k+m\times 7=0
Use the distributive property to multiply 47k by v_{0}-3.
47kv_{0}-141k=-m\times 7
Subtract m\times 7 from both sides. Anything subtracted from zero gives its negation.
47kv_{0}-141k=-7m
Multiply -1 and 7 to get -7.
\left(47v_{0}-141\right)k=-7m
Combine all terms containing k.
\frac{\left(47v_{0}-141\right)k}{47v_{0}-141}=-\frac{7m}{47v_{0}-141}
Divide both sides by 47v_{0}-141.
k=-\frac{7m}{47v_{0}-141}
Dividing by 47v_{0}-141 undoes the multiplication by 47v_{0}-141.
k=-\frac{7m}{47\left(v_{0}-3\right)}
Divide -7m by 47v_{0}-141.
k=-\frac{7m}{47\left(v_{0}-3\right)}\text{, }k\neq 0
Variable k cannot be equal to 0.
47k\left(v_{0}-3\right)+m\times 7=0
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 47km, the least common multiple of 1m,47k.
47kv_{0}-141k+m\times 7=0
Use the distributive property to multiply 47k by v_{0}-3.
-141k+m\times 7=-47kv_{0}
Subtract 47kv_{0} from both sides. Anything subtracted from zero gives its negation.
m\times 7=-47kv_{0}+141k
Add 141k to both sides.
7m=141k-47kv_{0}
The equation is in standard form.
\frac{7m}{7}=\frac{47k\left(3-v_{0}\right)}{7}
Divide both sides by 7.
m=\frac{47k\left(3-v_{0}\right)}{7}
Dividing by 7 undoes the multiplication by 7.
m=\frac{47k\left(3-v_{0}\right)}{7}\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}