Solve for a
\left\{\begin{matrix}a=\frac{v}{u}-1\text{, }&v\neq u\text{ and }u\neq 0\\a\neq 0\text{, }&u=0\text{ and }v=0\end{matrix}\right.
Solve for u
\left\{\begin{matrix}u=\frac{v}{a+1}\text{, }&a\neq -1\text{ and }a\neq 0\\u\in \mathrm{R}\text{, }&a=-1\text{ and }v=0\end{matrix}\right.
Share
Copied to clipboard
v-u=ua
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
ua=v-u
Swap sides so that all variable terms are on the left hand side.
\frac{ua}{u}=\frac{v-u}{u}
Divide both sides by u.
a=\frac{v-u}{u}
Dividing by u undoes the multiplication by u.
a=\frac{v}{u}-1
Divide v-u by u.
a=\frac{v}{u}-1\text{, }a\neq 0
Variable a cannot be equal to 0.
v-u=ua
Multiply both sides of the equation by a.
v-u-ua=0
Subtract ua from both sides.
-u-ua=-v
Subtract v from both sides. Anything subtracted from zero gives its negation.
\left(-1-a\right)u=-v
Combine all terms containing u.
\left(-a-1\right)u=-v
The equation is in standard form.
\frac{\left(-a-1\right)u}{-a-1}=-\frac{v}{-a-1}
Divide both sides by -1-a.
u=-\frac{v}{-a-1}
Dividing by -1-a undoes the multiplication by -1-a.
u=\frac{v}{a+1}
Divide -v by -1-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}